The Efficient Removal of Heavy Metal Ions from Industry Effluents Using Waste Biomass as Low-Cost Adsorbent: Thermodynamic and Kinetic Models
-
Ponnuswamy Indhumathi
and Munusamy Saravanabhavan
Abstract
The ability of green micro algae Chlorella vulgaris for biosorption of Cu(II) ions from an aqueous solution was studied. The biosorption process was affected by the solution pH, contact time, temperature and initial Cu(II) concentration. Experimental data were analyzed in terms of pseudo-first order, pseudo-second order and intra particle diffusion models. Results showed that the sorption process of Cu(II) ions followed pseudo-second order kinetics. The sorption data of Cu(II) ions are fitted to Langmuir, Freundlich, and Redlich–Peterson isotherms, and the Temkin isotherm. The thermodynamic study shows the Cu(II) biosorption was exothermic in nature. The Cu(II) ions were recovered effectively from Chlorella vulgaris biomass using 0.1 M H2SO4 with up to 90.3% recovery, allowing for recycling of the Cu. Green algae from freshwater bodies showed significant potential for Cu(II) removal and recovery from industrial wastewater.
Acknowledgements
The authors wish to express the gratitude for the support and financial help given by Department of Science and Technology, New Delhi for their support under Net Work Programme of Bio-Algae Carbon Sequestration research under the title “Carbon Sequestration and cultivating algae for green bio-fuel Production” (DST/IS-STAC/CO2-NWPBAS (2)/12G).
References
1. T. Aman, A. A. Kazi, M. U. Sabri, Q. Bano, Colloids Surf. B Biointerfaces 63 (2008) 116.10.1016/j.colsurfb.2007.11.013Search in Google Scholar
2. Y. Jiang, H. Pang, B. Liao, J. Hazard. Mater. 164 (2009) 1.10.1016/j.jhazmat.2008.07.107Search in Google Scholar
3. X. Huang, S. M. Illanpёё, B. Dou, E. T. Gjessing, Environ. Pollut. 156 (2008) 270.10.1016/j.envpol.2008.02.014Search in Google Scholar
4. F. A. A. Al-Rub, M. H. El-Naas, I. Ashour, M. Al-Marzouqi, Process Biochem. 41 (2006) 457.10.1016/j.procbio.2005.07.018Search in Google Scholar
5. J. Osredkar, J. Clin. Toxicol. S3:001 (2011) 1.10.4172/2161-0495.S3-001Search in Google Scholar
6. M. Ajmal, A. H. Khan, S. Ahmad, A. Ahmad, Water Res. 32 (1998) 3085.10.1016/S0043-1354(98)00067-0Search in Google Scholar
7. G. Donmez, Z. Aksu, Process Biochem. 35 (1999) 135.10.1016/S0032-9592(99)00044-8Search in Google Scholar
8. B. Yu, Y. Zhang, S. S. Shukla, J. Hazard. Mater. 80 (2000) 33.10.1016/S0304-3894(00)00278-8Search in Google Scholar
9. J. Virkutyte, E. Hullebusch, M. Sillanpёё, P. Lens, Environ. Pollut. 138 (2005) 518.10.1016/j.envpol.2005.04.009Search in Google Scholar
10. S. Babel, T. A. Kurniawan, J. Hazard. Mater. 97 (2003) 219.10.1016/S0304-3894(02)00263-7Search in Google Scholar
11. S. S. Ahluwalia, D. Goyal, Bioresour. Technol. 98 (2007) 2243.10.1016/j.biortech.2005.12.006Search in Google Scholar PubMed
12. H. Benaissa, M. A. Elouchdi, Chem. Eng. Process 46 (2007) 614.10.1016/j.cep.2006.08.006Search in Google Scholar
13. S. Bunluesin, M. Kruatrachue, P. Pokethitiyook, S. Upatham, G. R. Lanza, J. Biosci. Bioenergy 103 (2007) 509.10.1263/jbb.103.509Search in Google Scholar PubMed
14. E. Romera, F. Gonzalez, A. Ballester, M. Blazquez, J. Munoz, Crit. Rev. Biotechnol. 26 (2006) 223.10.1080/07388550600972153Search in Google Scholar PubMed
15. A. Hamdy, Curr. Microbiol. 41 (2000) 232.10.1007/s002840010126Search in Google Scholar PubMed
16. V. K. Gupta, A. Rastogi, J. Hazard. Mater. 163 (2009) 396.10.1016/j.jhazmat.2008.06.104Search in Google Scholar PubMed
17. R. Andersen, J. Berges, P. Harrison, M. Watanabe, Recipes for Freshwater and Seawater Media. Algal Culturing Techniques, Elsevier, Amsterdam (2005), P. 429.10.1016/B978-012088426-1/50027-5Search in Google Scholar
18. Z. S. Birungi, E. M. N. Chirwa, J. Hazard. Mater. 299 (2015) 67.10.1016/j.jhazmat.2015.06.011Search in Google Scholar PubMed
19. M. Aryal, Int. J. Environ. Res. 9 (2015) 1147.Search in Google Scholar
20. N. Mallick, World J. Microbiol. Biotechnol. 19 (2003) 695.10.1023/A:1025104918352Search in Google Scholar
21. B. Volesky, Sorption and Biosorption. BV-Sorbex Inc. Quebec, Canada (2003).Search in Google Scholar
22. B. Przemysław, N. Małgorzata, K. Łukasz, K. Natalia, K. Małgorzata, B. Monika, W. Marcin, Z. Jakub, C. Filip, J. Teofil, Arab. J. Chem. (2015). Available online: https://doi.org/10.1016/j.arabjc.2015.07.018.10.1016/j.arabjc.2015.07.018Search in Google Scholar
23. I. Langmuir, J. Am. Chem. Soc. 40 (1916) 1361.10.1021/ja02242a004Search in Google Scholar
24. T. W. Weber, R. K. Chakravorti, AIChE J. 20 (1974) 228.10.1002/aic.690200204Search in Google Scholar
25. V. Dang, H. Doan, T. Dang-Vu, A. Lohi, Bioresour. Technol. 100 (2009) 211.10.1016/j.biortech.2008.05.031Search in Google Scholar
26. H. M. F. Freundlich, J. Phys. Chem. 57 (1906) 385.Search in Google Scholar
27. R. Jayakumar, M. Rajasimman, C. Karthikeyan, Ecotoxicol. Environ. Saf. 121 (2015) 199.10.1016/j.ecoenv.2015.03.040Search in Google Scholar
28. M. J. Temkin, V. Pyzhev, Acta Phys. Chim. Sin. 12 (1940) 217.Search in Google Scholar
29. Y. S. Ho, J. F. Porter, G. McKay, Water Air Soil Pollut. 141 (2002) 1.10.1023/A:1021304828010Search in Google Scholar
30. K. Vijayaraghavan, T. V. N. Padmesh, K. Palanivelu, M. Velan, J. Hazard. Mater. 133 (2006) 304.10.1016/j.jhazmat.2005.10.016Search in Google Scholar
31. Y. S. Ho, Scientometrics 59 (2004) 171.10.1023/B:SCIE.0000013305.99473.cfSearch in Google Scholar
32. Y.S. Ho, G. McKay, Process Biochem. 34 (1999) 451.10.1016/S0032-9592(98)00112-5Search in Google Scholar
33. W. J. Weber, J. Morris, J. Sanitary Eng. Div. Am. Soc. Civ. Eng. 89 (1963) 31.10.1061/JSEDAI.0000430Search in Google Scholar
34. Y. S. Ho, A. E. Ofomaja, Process Biochem. 40 (2005) 3455.10.1016/j.procbio.2005.02.017Search in Google Scholar
35. P. Lodeiro, J. L. Barriada, R. Herrero, M. E. Sastrede Vicente, Environ. Pollut. 142 (2006) 264.10.1016/j.envpol.2005.10.001Search in Google Scholar PubMed
36. A. K. Meena, G. K. Mishra, P. K. Rai, C. Rajagopal, P. Nagar, J. Hazard. Mater. 122 (2005) 161.10.1016/j.jhazmat.2005.03.024Search in Google Scholar PubMed
37. K. Chojnacka, A. Chojnacki, H. Górecka, Chemosphere 59 (2005) 75.10.1016/j.chemosphere.2004.10.005Search in Google Scholar PubMed
©2018 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- The Electronic Structure Signature of the Spin Cross-Over Transition of [Co(dpzca)2]
- Thermal Degradation of Complexes Derived from Cu (II) Groundnut (Arachis hypogaea) and Sesame (Sesamum indicum) Soaps
- Effect of Mesoporous Diatomite Particles on the Kinetics of SR&NI ATRP of Styrene and Butyl Acrylate
- Removal of Hexavalent Chromium by Adsorption on Microwave Assisted Activated Carbon Prepared from Stems of Leucas Aspera
- Removal of Acid Yellow 17 Dye by Fenton Oxidation Process
- The Efficient Removal of Heavy Metal Ions from Industry Effluents Using Waste Biomass as Low-Cost Adsorbent: Thermodynamic and Kinetic Models
- Degradation of Acetaminophen in Aqueous Media by H2O2 Assisted Gamma Irradiation Process
- M(Al,Ni)-TiO2-Based Photoanode for Photoelectrochemical Solar Cells
- Quantum Mechanical Study of γ-Fe2O3 Nanoparticle as a Nanocarrier for Anticancer Drug Delivery
- Corrigendum
- Corrigendum to: Green Synthesis of CoFe2O4 and Investigation of its Catalytic Efficiency for Degradation of Dyes in Aqueous Medium
Articles in the same Issue
- Frontmatter
- The Electronic Structure Signature of the Spin Cross-Over Transition of [Co(dpzca)2]
- Thermal Degradation of Complexes Derived from Cu (II) Groundnut (Arachis hypogaea) and Sesame (Sesamum indicum) Soaps
- Effect of Mesoporous Diatomite Particles on the Kinetics of SR&NI ATRP of Styrene and Butyl Acrylate
- Removal of Hexavalent Chromium by Adsorption on Microwave Assisted Activated Carbon Prepared from Stems of Leucas Aspera
- Removal of Acid Yellow 17 Dye by Fenton Oxidation Process
- The Efficient Removal of Heavy Metal Ions from Industry Effluents Using Waste Biomass as Low-Cost Adsorbent: Thermodynamic and Kinetic Models
- Degradation of Acetaminophen in Aqueous Media by H2O2 Assisted Gamma Irradiation Process
- M(Al,Ni)-TiO2-Based Photoanode for Photoelectrochemical Solar Cells
- Quantum Mechanical Study of γ-Fe2O3 Nanoparticle as a Nanocarrier for Anticancer Drug Delivery
- Corrigendum
- Corrigendum to: Green Synthesis of CoFe2O4 and Investigation of its Catalytic Efficiency for Degradation of Dyes in Aqueous Medium