Home Quantum Mechanical Study of γ-Fe2O3 Nanoparticle as a Nanocarrier for Anticancer Drug Delivery
Article
Licensed
Unlicensed Requires Authentication

Quantum Mechanical Study of γ-Fe2O3 Nanoparticle as a Nanocarrier for Anticancer Drug Delivery

  • Hadi Lari , Ali Morsali EMAIL logo and Mohammad Momen Heravi
Published/Copyright: January 26, 2018

Abstract

Using density functional theory (DFT), noncovalent interactions and four mechanisms of covalent functionalization of melphalan anticancer drug onto γ-Fe2O3 nanoparticles have been studied. Quantum molecular descriptors of noncovalent configurations were investigated. It was specified that binding of melphalan onto γ-Fe2O3 nanoparticles is thermodynamically suitable. Hardness and the gap of energy between LUMO and HOMO of melphalan are higher than the noncovalent configurations, showing the reactivity of drug increases in the presence of γ-Fe2O3 nanoparticles. Melphalan can bond to γ-Fe2O3 nanoparticles through NH2 (k1 mechanism), OH (k2 mechanism), C=O (k3 mechanism) and Cl (k4 mechanism) groups. The activation energies, the activation enthalpies and the activation Gibbs free energies of these reactions were calculated. Thermodynamic data indicate that k3 mechanism is exothermic and spontaneous and can take place at room temperature. These results could be generalized to other similar drugs.

Acknowledgements

We thank the Research Centre for Animal Development Applied Biology for allocation of computer time.

References

1. G. D. Pennock, W. S. Dalton, W. R. Roeske, C. P. Appleton, K. Mosley, P. Plezia, T. P. Miller, S. E. Salmon, J. Natl. Cancer Inst. 83 (1991) 105.10.1093/jnci/83.2.105Search in Google Scholar

2. C. Lindley, J. S. McCune, T. E. Thomason, D. Lauder, A. Sauls, S. Adkins, W. T. Sawyer, Cancer Pract. 7 (1999) 59.10.1046/j.1523-5394.1999.07205.xSearch in Google Scholar

3. T. Iwamoto, Biol. Pharm. Bull. 36 (2013) 715.10.1248/bpb.b12-01102Search in Google Scholar

4. R. H. Mathijssen, A. Sparreboom, J. Verweij, Nat. Rev. Clin. Oncol. 11 (2014) 272.10.1038/nrclinonc.2014.40Search in Google Scholar

5. A. H. Lu, E. e. L. Salabas, F. Schüth, Angew. Chem. Int. Ed. 46 (2007) 1222.10.1002/anie.200602866Search in Google Scholar

6. Y.-W. Jun, J.-W. Seo, J. Cheon, Acc. Chem. Res. 41 (2008) 179.10.1021/ar700121fSearch in Google Scholar

7. S. Dutz, R. Hergt, J. Mürbe, J. Töpfer, R. Müller, M. Zeisberger, W. Andrä, M. Bellemann, Z. Phys. Chem. 220 (2006) 145.10.1524/zpch.2006.220.2.145Search in Google Scholar

8. Q. A. Pankhurst, J. Connolly, S. K. Jones, J. Dobson, J. Phys. D: Appl. Phys. 36 (2003) R167.10.1088/0022-3727/36/13/201Search in Google Scholar

9. C. C. Berry, A. S. Curtis, J. Phys. D: Appl. Phys. 36 (2003) R198.10.1088/0022-3727/36/13/203Search in Google Scholar

10. M. Arruebo, R. Fernández-Pacheco, M. R. Ibarra, J. Santamaría, Nano Today 2 (2007) 22.10.1016/S1748-0132(07)70084-1Search in Google Scholar

11. A. Akbarzadeh, M. Samiei, S. Davaran, Nanoscale Res. Lett. 7 (2012) 144.10.1186/1556-276X-7-144Search in Google Scholar PubMed PubMed Central

12. A. Dubavik, V. Lesnyak, N. Gaponik, A. Eychmüller, Z. Phys. Chem. 228 (2014) 171.10.1515/zpch-2014-0474Search in Google Scholar

13. A. Cini, P. Ceci, E. Falvo, D. Gatteschi, M. Fittipaldi, Z. Phys. Chem. 231 (2017) 745.10.1515/zpch-2016-0846Search in Google Scholar

14. C. Fang, M. Zhang, J. Mater. Chem. 19 (2009) 6258.10.1039/b902182eSearch in Google Scholar PubMed PubMed Central

15. G.-B. Ding, H.-Y. Liu, Y. Wang, Y.-Y. Lü, Y. Wu, Y. Guo, L. Xu, Chem. Res. Chin. Univ. 29 (2013) 103.10.1007/s40242-013-2134-7Search in Google Scholar

16. M. Schwalbe, N. Buske, M. Vetterlein, K. Höffken, K. Pachmann, J. Clement, Z. Phys. Chem. 220 (2006) 125.10.1524/zpch.2006.220.1.125Search in Google Scholar

17. V. Schneider, A. Reinholdt, U. Kreibig, T. Weirich, G. Güntherodt, B. Beschoten, A. Tillmanns, H. Krenn, K. Rumpf, P. Granitzer, Z. Phys. Chem. 220 (2006) 173.10.1524/zpch.2006.220.2.173Search in Google Scholar

18. S. Mornet, S. Vasseur, F. Grasset, E. Duguet, J. Mater. Chem. 14 (2004) 2161.10.1039/b402025aSearch in Google Scholar

19. A. Ito, M. Shinkai, H. Honda, T. Kobayashi, J. Biosci. Bioeng. 100 (2005) 1.10.1263/jbb.100.1Search in Google Scholar PubMed

20. J. Dobson, Drug Dev. Res. 67 (2006) 55.10.1002/ddr.20067Search in Google Scholar

21. M. Namdeo, S. Saxena, R. Tankhiwale, M. Bajpai, Y. Mohan, S. Bajpai, J. Nanosci. Nanotechnol. 8 (2008) 3247.10.1166/jnn.2008.399Search in Google Scholar PubMed

22. G. Buntkowsky, K. Ivanov, H.-M. Vieth, Z. Phys. Chem. 231 (2017) 167.10.1515/zpch-2016-5006Search in Google Scholar

23. P. Morais, V. Garg, A. Oliveira, L. Silveira, J. Santos, M. Rodrigues, A. Tedesco, ISIAME 2008, Springer, Bucharest (2009), P. 269.10.1007/978-3-642-01370-6_34Search in Google Scholar

24. M.-Y. Hua, H.-L. Liu, H.-W. Yang, P.-Y. Chen, R.-Y. Tsai, C.-Y. Huang, I.-C. Tseng, L.-A. Lyu, C.-C. Ma, H.-J. Tang, Biomaterials 32 (2011) 516.10.1016/j.biomaterials.2010.09.065Search in Google Scholar PubMed

25. H. Kempe, M. Kempe, Biomaterials 31 (2010) 9499.10.1016/j.biomaterials.2010.07.107Search in Google Scholar PubMed

26. A. Priprem, P. Mahakunakorn, C. Thomas, I. Thomas, Am. J. Nanotechnol. 1 (2010) 78.Search in Google Scholar

27. M. Mahmoudi, H. Hofmann, B. Rothen-Rutishauser, A. Petri-Fink, Chem. Rev. 112 (2011) 2323.10.1021/cr2002596Search in Google Scholar PubMed

28. L. Gu, R. H. Fang, M. J. Sailor, J.-H. Park, ACS Nano. 6 (2012) 4947.10.1021/nn300456zSearch in Google Scholar PubMed PubMed Central

29. T. K. Jain, M. K. Reddy, M. A. Morales, D. L. Leslie-Pelecky, V. Labhasetwar, Mol. Pharm. 5 (2008) 316.10.1021/mp7001285Search in Google Scholar PubMed

30. L. K. Limbach, P. Wick, P. Manser, R. N. Grass, A. Bruinink, W. J. Stark, Environ. Sci. Technol. 41 (2007) 4158.10.1021/es062629tSearch in Google Scholar PubMed

31. M. E. Horowitz, E. Etcubanas, M. Christensen, J. A. Houghton, S. George, A. Green, P. Houghton, J. Clin. Oncol. 6 (1988) 308.10.1200/JCO.1988.6.2.308Search in Google Scholar PubMed

32. T. Facon, J. Y. Mary, C. Hulin, L. Benboubker, M. Attal, B. Pegourie, M. Renaud, J. L. Harousseau, G. Guillerm, C. Chaleteix, Lancet 370 (2007) 1209.10.1016/S0140-6736(07)61537-2Search in Google Scholar

33. Y. B. Zheng, B. Kiraly, T. J. Huang, Nanomedicine 5 (2010) 1309.10.2217/nnm.10.111Search in Google Scholar PubMed

34. V. Linko, A. Ora, M. A. Kostiainen, Trends Biotechnol. 33 (2015) 586.10.1016/j.tibtech.2015.08.001Search in Google Scholar PubMed

35. W. Szymański, J. M. Beierle, H. A. Kistemaker, W. A. Velema, B. L. Feringa, Chem. Rev. 113 (2013) 6114.10.1021/cr300179fSearch in Google Scholar PubMed

36. A. D. Becke, Phys. Rev. A 38 (1988) 3098.10.1103/PhysRevA.38.3098Search in Google Scholar PubMed

37. A. D. Becke, J. Chem. Phys. 98 (1993) 5648.10.1063/1.464913Search in Google Scholar

38. C. Lee, W. Yang, R. G. Parr, Phy. Rev. B 37 (1988) 785.10.1103/PhysRevB.37.785Search in Google Scholar

39. M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, Wallingford, CT (2009).Search in Google Scholar

40. S. Hooman Vahidi, A. Morsali, S. Ali Beyramabadi, Comp. Theor. Chem. 994 (2012) 41.10.1016/j.comptc.2012.06.010Search in Google Scholar

41. A. Akbari, F. Hoseinzade, A. Morsali, S. Ali Beyramabadi, Inorg. Chim. Acta 394 (2013) 423.10.1016/j.ica.2012.09.003Search in Google Scholar

42. A. Morsali, F. Hoseinzade, A. Akbari, S. A. Beyramabadi, R. Ghiasi, J. Solution Chem. 42 (2013) 1902.10.1007/s10953-013-0092-9Search in Google Scholar

43. S. Mohseni, M. Bakavoli, A. Morsali, Prog. React. Kinet. Mec. 39 (2014) 89.10.3184/97809059274714X13874723178403Search in Google Scholar

44. S. A. Beyramabadi, H. Eshtiagh-Hosseini, M. R. Housaindokht, A. Morsali, Organometallics 27 (2007) 72.10.1021/om700445jSearch in Google Scholar

45. A. Gharib, A. Morsali, S. Beyramabadi, H. Chegini, M. N. Ardabili, Prog. React. Kinet. Mec. 39 (2014) 354.10.3184/146867814X14119972226966Search in Google Scholar

46. A. Morsali, Int. J. Chem. Kinet. 47 (2015) 73.10.1002/kin.20893Search in Google Scholar

47. M. N. Ardabili, A. Morsali, S. A. Beyramabadi, H. Chegini, A. Gharib, Res. Chem. Intermed. 41 (2015) 5389.10.1007/s11164-014-1640-7Search in Google Scholar

48. R. Cammi, J. Tomasi, J. Comput. Chem. 16 (1995) 1449.10.1002/jcc.540161202Search in Google Scholar

49. J. Tomasi, M. Persico, Chem. Rev. 94 (1994) 2027.10.1021/cr00031a013Search in Google Scholar

50. L. Jayarathne, W. Ng, A. Bandara, M. Vitanage, C. Dissanayake, R. Weerasooriya, Colloids Surf. 403 (2012) 96.10.1016/j.colsurfa.2012.03.061Search in Google Scholar

51. M. Galli, A. Guerrini, S. Cauteruccio, P. Thakare, D. Dova, F. Orsini, P. Arosio, C. Carrara, C. Sangregorio, A. Lascialfari, RSC Adv. 7 (2017) 15500.10.1039/C7RA00519ASearch in Google Scholar

52. K. V. Korpany, C. Mottillo, J. Bachelder, S. N. Cross, P. Dong, S. Trudel, T. Friščić, A. S. Blum, Chem. Commun. 52 (2016) 3054.10.1039/C5CC07107KSearch in Google Scholar

53. F. Herranz, M. Morales, A. G. Roca, R. Vilar, J. Ruiz-Cabello, Contrast Media Mol. Imaging 3 (2008) 215.10.1002/cmmi.254Search in Google Scholar PubMed

54. M. Teymoori, A. Morsali, M. R. Bozorgmehr, S. A. Beyramabadi, Bull. Korean Chem. Soc. 38 (2017) 869.10.1002/bkcs.11187Search in Google Scholar


Supplemental Material:

The online version of this article offers supplementary material (https://doi.org/10.1515/zpch-2017-0995).


Received: 2017-6-7
Accepted: 2017-12-19
Published Online: 2018-1-26
Published in Print: 2018-5-24

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 1.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2017-0995/html
Scroll to top button