Abstract
Al2O3 doped TiO2 samples were prepared by the simple sol-gel method. The prepared samples were annealed at 400°C for 1 h in an open air atmosphere. The dielectric properties, AC electrical conductivity (σac), dielectric constant (ε′), dielectric loss (ε″) and the loss tangent (tan δ) of the prepared Al2O3 doped TiO2 nanocomposites were studied under a wide frequency and temperature range. The dielectric loss values of the prepared samples were measured at 50 Hz and 5 MHz and the values were found to be in the range of 0.11–1.73 at 40°C and 0.13–4.39 at 100°C. The microstructures of the prepared samples were also studied using high-resolution transmission electron microscopy (HRTEM) analysis.
Acknowledgments
This work was supported by the Board of Research in Nuclear Sciences (BRNS), Department of Atomic Energy (DAE), Government of India (No. 34/14/49/2014-BRNS/2082).
References
1. B. O’Regan, M. Grätzel M, Nature 353 (1991) 737.10.1038/353737a0Suche in Google Scholar
2. A. Mills, S. Le Hunte, J. Photochem. Photobiol. A-Chem. 108 (1997) 1.10.1016/S1010-6030(97)00118-4Suche in Google Scholar
3. Z. F. Zhu, H. Liu, H. J. Sun, D. Yang, Micropor. Mesopor. Mat. 123 (2009) 39.10.1016/j.micromeso.2009.03.028Suche in Google Scholar
4. M. Mazloumi, R. Khalifenhzadeh, S. K. Sadrnezhaad, J. Am. Ceram. Soc. 89 (2006) 3654.10.1111/j.1551-2916.2006.01285.xSuche in Google Scholar
5. T. Park, J. S. Lim, Y. Lee, S. Kim, J. Supercrit. Fluid. 26 (2003) 201.10.1016/S0896-8446(02)00161-4Suche in Google Scholar
6. C. Piqueras, S. Bottini, D. Damiani, Appl. Catal. A-Gen. 313 (2006) 177.10.1016/j.apcata.2006.07.023Suche in Google Scholar
7. C. M. Piqueras, M. B. Fernandez, G. M. Tonetto, S. Bottni, D. E. Damiani, Catalysis Communications 7 (2006) 344.10.1016/j.catcom.2005.12.010Suche in Google Scholar
8. J. C. Li, L. Xiang, X. Feng, Z. W. Wang, F. Wei, Appl. Surf. Sci. 253 (2006) 766.10.1016/j.apsusc.2006.05.042Suche in Google Scholar
9. G. Xiong, X. Wang, L. Lu, X. Yang, Y. Xu, J. Solid State Chem. 141 (1998) 70.10.1006/jssc.1998.7917Suche in Google Scholar
10. S. Sivakumar, C. P. Sibu, P. Mukundan, P. K. Pillai, K. G. K. Warrier, Mater. Lett. 58 (2004) 2664.10.1016/j.matlet.2004.03.050Suche in Google Scholar
11. S. Liu, W. Tao, J. Li, Z. Yang, F. Liu, Powder Technol. 155 (2005) 187.10.1016/j.powtec.2005.05.048Suche in Google Scholar
12. B. N. Das, J. Mater. Sci. Lett. 11 (1992) 843.10.1007/BF00730482Suche in Google Scholar
13. R. Linacero, M. L. Rojas-Cervantes, J. D. E. D. Lopez-Gonzalez, J. Mater. Sci. 35 (2000) 3279.10.1023/A:1004879507005Suche in Google Scholar
14. L. Lei, H. P. Chu, X. Hu, P. L. Yue, Ind. Eng. Chem. Res. 38 (1999) 3381.10.1021/ie980677jSuche in Google Scholar
15. D. A. Ward, E. I. Ko, Ind. Eng. Chem. Res. 34 (1995) 421.10.1021/ie00041a001Suche in Google Scholar
16. Z. Liu, R. J. Davis, J. Phys. Chem. 98 (1994) 1253.10.1021/j100055a035Suche in Google Scholar
17. M. Schraml-Marth, K. L. Walther, A. Wokaun, J. Non-Cryst. Solids, 143 (1992) 93.10.1016/S0022-3093(05)80557-5Suche in Google Scholar
18. J. N. Hay, H. M. Raval, J. Mater. Chem. 8 (1998) 1233.10.1039/a707549iSuche in Google Scholar
19. A. Tataroglu, S. Altindal, Microelectron. Eng. 81 (2005) 140.10.1016/j.mee.2005.04.008Suche in Google Scholar
20. K. Prabakar, S. K. Narayandass, D. Mangalraj, Phys. Status solidi A 199 (2003) 507.10.1002/pssa.200306628Suche in Google Scholar
21. P. Pissis, A. Kyritsis, Solid State Ionics 97 (1997) 105.10.1016/S0167-2738(97)00074-XSuche in Google Scholar
22. M. Popescu, I. Bunget, Physics of Solid Dielectrics, Elsevier, Amsterdam (1984).Suche in Google Scholar
23. A. Chelkowski, Dielectric Physics, Elsevier, Amsterdam (1980).Suche in Google Scholar
24. M. Krishn, A. Murthy, K. S. N. Murthy, N. Veeraiah, Bull. Mater. Sci. 23 (2000) 285.10.1007/BF02720084Suche in Google Scholar
25. M. Goswami, S. K. Deshpande, R. Kumar, G. P. Kothiyal, J. Phys. Chem. Solids 71 (2010) 739.10.1016/j.jpcs.2010.01.014Suche in Google Scholar
26. P. Yongping, H. Yao, W. Peikui, S. Zixiong, L. Xiaoyan, D. Zijing, Ceram. Int. 41 (2015) S818.10.1016/j.ceramint.2015.03.249Suche in Google Scholar
27. A. Truptimayee, R. N. P. Choudhary, Mater. Chem. Phys. xxx (2016) 1.Suche in Google Scholar
28. O. Bidault, P. Goux, M. Kchikech, M. Belkaoumi, M. Magilone, Phys. Rev. B 49 (1994) 7868.10.1103/PhysRevB.49.7868Suche in Google Scholar
29. C. Fanggao, G. A. Saunders, E. F. Lambson, R. N. Hampton, G. Carini, G. D. Marco, M. Lanza, J. Polym. Sci. Part B: Polym. Phys. 34 (1996) 425.10.1002/(SICI)1099-0488(199602)34:3<425::AID-POLB3>3.0.CO;2-SSuche in Google Scholar
30. A. A. Sattar, S. A. Rahman, Phys. Status Solidi A 200 (2003) 415.10.1002/pssa.200306663Suche in Google Scholar
31. O. Pakma, N. Serin, T. Serin, S. Altindal, J. Phys. D: Appl. Phys. 41 (2008) 215103.10.1088/0022-3727/41/21/215103Suche in Google Scholar
32. F. Parlakterk, S. Altindal, M. Parlak, A. Agasiyev, Microelectron. Eng. 85 (2008) 81.10.1016/j.mee.2007.03.012Suche in Google Scholar
33. B. H. Park, S. J. Hyun, C. R. Moon, B. D. Choe, J. Lee, C. Y. Kim, W. Jo, T. W. Noh, J. Appl. Phys. 84 (1998) 4428.10.1063/1.368666Suche in Google Scholar
34. V. V. Daniel, Dielectric Relaxation, Academic Press, London (1967).Suche in Google Scholar
35. Y. Şafak-asar, T. Asar, Ş. Altindal, S. Özçelik, J. Alloy. Compd. 628 (2015) 442.10.1016/j.jallcom.2014.12.170Suche in Google Scholar
36. T. Wattana, S. Pornjuk, S. Ekaphan, D. Supamas, T. Prasit, Microelectron. Eng. 146 (2015) 32.10.1016/j.mee.2014.11.021Suche in Google Scholar
37. Z. Zhang, J. T. Yates Jr., Chem. Rev. 112 (2012) 5520.10.1021/cr3000626Suche in Google Scholar PubMed
©2016 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Spectroscopic, Quantum Chemical, Physical and Antioxidant Studies on 2-Amino 4-Picolinium 4-Nitrobenzoate – An Organic Crystal for Nonlinear Optical and Biological Applications
- Density Functional Theory Calculations, Spectroscopic (FT-IR, FT-RAMAN), Frontier Molecular Orbital, Molecular Electrostatic Potential Analysis of 5-Fluoro-2-Methylbenzaldehyde
- A Green Approach to the Synthesis of Reduced Graphene Oxide using Sodium Humate
- Sintered Carbon Nanomaterials: Structural Change and Adsorption Properties
- Sonochemical Synthesis of Nanostructured ZnO/Ag Composites in an Ionic Liquid
- Preparation and Characterization of Al2O3 Doped TiO2 Nanocomposites Prepared from Simple Sol-Gel Method
- Solvation of Some Tetraalkylammonium Salts Investigated Conductometrically and Viscometrically in Binary Mixtures of Acetonitrile + Methanol at 298.15 K
- Volumetric, Ultrasonic and Viscometric Studies of Aspirin in the Presence of 1-Octyl-3-Methylimidazolium Bromide Ionic Liquid in Acetonitrile Solutions at T=(288.15–318.15) K
Artikel in diesem Heft
- Frontmatter
- Spectroscopic, Quantum Chemical, Physical and Antioxidant Studies on 2-Amino 4-Picolinium 4-Nitrobenzoate – An Organic Crystal for Nonlinear Optical and Biological Applications
- Density Functional Theory Calculations, Spectroscopic (FT-IR, FT-RAMAN), Frontier Molecular Orbital, Molecular Electrostatic Potential Analysis of 5-Fluoro-2-Methylbenzaldehyde
- A Green Approach to the Synthesis of Reduced Graphene Oxide using Sodium Humate
- Sintered Carbon Nanomaterials: Structural Change and Adsorption Properties
- Sonochemical Synthesis of Nanostructured ZnO/Ag Composites in an Ionic Liquid
- Preparation and Characterization of Al2O3 Doped TiO2 Nanocomposites Prepared from Simple Sol-Gel Method
- Solvation of Some Tetraalkylammonium Salts Investigated Conductometrically and Viscometrically in Binary Mixtures of Acetonitrile + Methanol at 298.15 K
- Volumetric, Ultrasonic and Viscometric Studies of Aspirin in the Presence of 1-Octyl-3-Methylimidazolium Bromide Ionic Liquid in Acetonitrile Solutions at T=(288.15–318.15) K