Abstract
A green and simple chemistry approach was demonstrated to prepare reduced graphene oxide (rGO) using sodium humate (SH) as the reducing agent. Without using toxic and harmful chemicals, this method is environmentally friendly and suitable for the large-scale production of graphene. At first, the improved Hummers method to oxidize graphite for the synthesis of graphene oxide (GO) was applied, and then the as-prepared GO was reduced by SH to form rGO. Characterization was performed using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectrometry (XPS) and Raman spectra. The intensity ratio of the D and G band (ID/IG) of GO after reduction with SH increases from 0.96 (GO) to 1.11 (rGO), the results obtained from the Raman spectra proved high purity of the final products.
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: 51308252
Funding statement: This work was supported by the National Natural Science Foundation of China (No. 51308252), Jilin Province Science and Technology Development Plans (No. 20130101091JC) and the analysis and testing foundation of Jilin University and Changchun Technology Innovation Fund (No. 2009086).
Acknowledgments
This work was supported by the National Natural Science Foundation of China (No. 51308252), Jilin Province Science and Technology Development Plans (No. 20130101091JC) and the analysis and testing foundation of Jilin University and Changchun Technology Innovation Fund (No. 2009086).
References
1. S. Chabi, C. Peng, D. Hu, Y. Zhu, Adv. Mater. 26 (2014) 2440.10.1002/adma.201305095Suche in Google Scholar PubMed
2. I. A. Aksay, D. Dabbs, U.S. Patent Application No. 15/055,505. (2016).Suche in Google Scholar
3. A. Ali Tahir, H. Ullah, P. Sudhagar, M. Asri Mat Teridi, A. Devadoss, S. Sundaram, The Chemical Record. DOI: 10.1002/tcr.201500279.10.1002/tcrSuche in Google Scholar
4. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, R. S. Ruoff, Carbon 45 (2007) 1558.10.1016/j.carbon.2007.02.034Suche in Google Scholar
5. X. An, C. Y. Jimmy, RSC Adv. 1 (2011) 1426.10.1039/c1ra00382hSuche in Google Scholar
6. T. Som, G. V. Troppenz, R. Wendt, M. Wollgarten, J. Rappich, F. Emmerling, K. Rademann, ChemSusChem 7 (2014) 854.10.1002/cssc.201300990Suche in Google Scholar PubMed
7. S. Linley, Y. Liu, C. J. Ptacek, D. W. Blowes, F. X. Gu, ACS Appl. Mater. Interfaces 6 (2014) 4658.10.1021/am4039272Suche in Google Scholar PubMed
8. Z. Yan, Z. Peng, J. M. Tour, Acc. Chem. Res. 47 (2014) 1327.10.1021/ar4003043Suche in Google Scholar PubMed
9. J. S. Y. Chia, M. T. Tan, P. S. Khiew, J. K. Chin, H. Lee, D. Bien, C. W. Siong, Chem. Eng. J. 249 (2014) 270.10.1016/j.cej.2014.03.081Suche in Google Scholar
10. G. Xie, M. Forslund, J. Pan, ACS Appl. Mater. Interfaces 6 (2014) 7444.10.1021/am500768gSuche in Google Scholar PubMed
11. S. Pei, H.-M. Cheng, Carbon 50 (2012) 3210.10.1016/j.carbon.2011.11.010Suche in Google Scholar
12. S. Park, J. An, J. R. Potts, A. Velamakanni, S. Murali, R. S. Ruoff, Carbon 49 (2011) 3019.10.1016/j.carbon.2011.02.071Suche in Google Scholar
13. T. H. T. Vu, T. T. T. Tran, H. N. T. Le, P. H. T. Nguyen, N. Q. Bui, N. Essayem, Bull. Mater. Sci. 38 (2015) 667.10.1007/s12034-015-0896-xSuche in Google Scholar
14. O. Akhavan, E. Ghaderi, S. Aghayee, Y. Fereydooni, A. Talebi, J. Mater. Chem. 22 (2012) 13773.10.1039/c2jm31396kSuche in Google Scholar
15. M. Fernandez-Merino, L. Guardia, J. Paredes, S. Villar-Rodil, P. Solis-Fernandez, A. Martinez-Alonso, J. Tascon, J. Phys. Chem. C 114 (2010) 6426.10.1021/jp100603hSuche in Google Scholar
16. A. Esfandiar, O. Akhavan, A. Irajizad, J. Mater. Chem. 21 (2011) 10907.10.1039/c1jm10151jSuche in Google Scholar
17. O. Akhavan, M. Kalaee, Z. Alavi, S. Ghiasi, A. Esfandiar, Carbon 50 (2012) 3015.10.1016/j.carbon.2012.02.087Suche in Google Scholar
18. S. Gurunathan, J. W. Han, V. Eppakayala, J.-H. Kim, Colloids Surf. B 102 (2013) 772.10.1016/j.colsurfb.2012.09.011Suche in Google Scholar PubMed
19. Q. Ma, J. Song, C. Jin, Z. Li, J. Liu, S. Meng, J. Zhao, Y. Guo, Carbon 54 (2013) 36.10.1016/j.carbon.2012.10.067Suche in Google Scholar
20. M. Jana, S. Saha, P. Khanra, N. C. Murmu, S. K. Srivastava, T. Kuila, J. H. Lee, Mater. Sci. Eng. B 186 (2014) 33.10.1016/j.mseb.2014.03.004Suche in Google Scholar
21. T. A. Pham, J. S. Kim, J. S. Kim, Y. T. Jeong, Colloids Surf. A 384 (2011) 543.10.1016/j.colsurfa.2011.05.019Suche in Google Scholar
22. L. Shi, C. Yang, X. Su, J. Wang, F. Xiao, J. Fan, C. Feng, H. Sun, Ceram. Int. 40 (2014) 5103.10.1016/j.ceramint.2013.10.104Suche in Google Scholar
23. C. Szczerski, C. Naguit, J. Markham, T. B. Goh, S. Renault, Water Air Soil Pollut. 224 (2013) 1.10.1007/s11270-013-1471-ySuche in Google Scholar
24. N. O. Aguiar, F. L. Olivares, E. H. Novotny, L. B. Dobbss, D. M. Balmori, L. G. Santos-Júnior, J. G. Chagas, A. R. Façanha, L. P. Canellas, Plant Soil 362 (2013) 161.10.1007/s11104-012-1277-5Suche in Google Scholar
25. D. Doulia, C. Leodopoulos, K. Gimouhopoulos, F. Rigas, J. Colloid Interface Sci. 340 (2009) 131.10.1016/j.jcis.2009.07.028Suche in Google Scholar PubMed
26. Q. Zhang, L. Zhao, Y.-h Dong, G.-y. Huang, J. Environ. Manage. 102 (2012) 165.10.1016/j.jenvman.2011.12.036Suche in Google Scholar PubMed
27. J. Zhang, G. Li, F. Yang, N. Xu, H. Fan, T. Yuan, L. Chen, Appl. Surf. Sci. 259 (2012) 774.10.1016/j.apsusc.2012.07.120Suche in Google Scholar
28. N. Huang, H. Lim, C. Chia, M. Yarmo, M. Muhamad, Int. J. Nanomedicine 6 (2011) 3443.10.2147/IJN.S26812Suche in Google Scholar PubMed PubMed Central
29. Z. Lei, L. Lu, X. Zhao, Energy Environ. Sci. 5 (2012) 6391.10.1039/C1EE02478GSuche in Google Scholar
30. R. Rozada, J. I. Paredes, S. Villar-Rodil, A. Martínez-Alonso, J. M. Tascón, Nano Res. 6 (2013) 216.10.1007/s12274-013-0298-6Suche in Google Scholar
31. A. C. Ferrari, Solid State Commun. 143 (2007) 47.10.1016/j.ssc.2007.03.052Suche in Google Scholar
32. D. N. Tran, S. Kabiri, D. Losic, Carbon 76 (2014) 193.10.1016/j.carbon.2014.04.067Suche in Google Scholar
33. S. Thakur, N. Karak, Carbon 50 (2012) 5331.10.1016/j.carbon.2012.07.023Suche in Google Scholar
©2016 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Spectroscopic, Quantum Chemical, Physical and Antioxidant Studies on 2-Amino 4-Picolinium 4-Nitrobenzoate – An Organic Crystal for Nonlinear Optical and Biological Applications
- Density Functional Theory Calculations, Spectroscopic (FT-IR, FT-RAMAN), Frontier Molecular Orbital, Molecular Electrostatic Potential Analysis of 5-Fluoro-2-Methylbenzaldehyde
- A Green Approach to the Synthesis of Reduced Graphene Oxide using Sodium Humate
- Sintered Carbon Nanomaterials: Structural Change and Adsorption Properties
- Sonochemical Synthesis of Nanostructured ZnO/Ag Composites in an Ionic Liquid
- Preparation and Characterization of Al2O3 Doped TiO2 Nanocomposites Prepared from Simple Sol-Gel Method
- Solvation of Some Tetraalkylammonium Salts Investigated Conductometrically and Viscometrically in Binary Mixtures of Acetonitrile + Methanol at 298.15 K
- Volumetric, Ultrasonic and Viscometric Studies of Aspirin in the Presence of 1-Octyl-3-Methylimidazolium Bromide Ionic Liquid in Acetonitrile Solutions at T=(288.15–318.15) K
Artikel in diesem Heft
- Frontmatter
- Spectroscopic, Quantum Chemical, Physical and Antioxidant Studies on 2-Amino 4-Picolinium 4-Nitrobenzoate – An Organic Crystal for Nonlinear Optical and Biological Applications
- Density Functional Theory Calculations, Spectroscopic (FT-IR, FT-RAMAN), Frontier Molecular Orbital, Molecular Electrostatic Potential Analysis of 5-Fluoro-2-Methylbenzaldehyde
- A Green Approach to the Synthesis of Reduced Graphene Oxide using Sodium Humate
- Sintered Carbon Nanomaterials: Structural Change and Adsorption Properties
- Sonochemical Synthesis of Nanostructured ZnO/Ag Composites in an Ionic Liquid
- Preparation and Characterization of Al2O3 Doped TiO2 Nanocomposites Prepared from Simple Sol-Gel Method
- Solvation of Some Tetraalkylammonium Salts Investigated Conductometrically and Viscometrically in Binary Mixtures of Acetonitrile + Methanol at 298.15 K
- Volumetric, Ultrasonic and Viscometric Studies of Aspirin in the Presence of 1-Octyl-3-Methylimidazolium Bromide Ionic Liquid in Acetonitrile Solutions at T=(288.15–318.15) K