Abstract
Molar conductances and viscosities of some tetraalkylammonium perchlorate salts (R4NClO4 where R=methyl, ethyl, propyl, butyl) have been measured in the concentration range (30–500)×10−4 M in the binary mixtures of acetonitrile (AN)+methanol (MeOH) containing 0, 20, 40, 60, 80 and 100 mol% methanol at 298.15 K. Conductance data was analyzed by the Shedlovsky equation and the viscosity data by Jones–Dole equation. The limiting ionic conductances (λo±) were used to calculate the solvated radii (ri) of the ions. The A and B coefficients of the Jones–Dole equation are positive in all salts. The A coefficients are in reasonably good agreement with the limiting theoretical values (Aη) calculated using Falkenhagen–Vernon equation. The variation of the actual solvated radii (ri) as well as the ionic B± coefficients with solvent composition in AN+MeOH mixtures shows the preferential solvation of tetraalkylammonium ions by methanol-rich region of the mixtures. The extent of solvation of the tetraalkylammonium ions is in the order Me4N+>Et4N+>Pr4N+>Bu4N+.
References
1. H. Anand, R. Verma, Z. Phys. Chem. 230 (2016) 185.10.1515/zpch-2015-0636Search in Google Scholar
2. B. Das, Hazara, J. Chem. Engg. Data. 45 (2000) 353.10.1021/je990239zSearch in Google Scholar
3. D. S. Gill, A. N. Sharma, J. Chem. Soc. Faraday Trans. 1. 78 (1982) 475.10.1039/f19827800475Search in Google Scholar
4. M. N. Roy, A. Banerjee, R. K. Das, J. Chem. Therm. 41 (2009) 1187.10.1016/j.jct.2009.03.005Search in Google Scholar
5. B. Kratochvil, H. L. Yeager, Top. Curr. Chem. 27 (1972) 1.Search in Google Scholar
6. D. S. Gill, V. Pathania, B. K. Vermani, R. P. Sharma, Z. Phys. Chem. 217 (2003) 739.10.1524/zpch.217.6.739.20446Search in Google Scholar
7. M. N. Roy, R. Dewan, L. Sarkar, J. Chem. Eng. Data. 55 (2010) 1347.10.1021/je900656cSearch in Google Scholar
8. A. Riddick, W. B. Bunger, T. K. Sakano, Organic solvents, Physical Properties and Methods of Purification, Wiley Interscience, New York, 4th Ed. (1986).Search in Google Scholar
9. D. S. Gill, M. S. Bakshi, J. Chem. Soc. Faraday Trans. 1. 84 (1988) 3517.10.1039/f19888403517Search in Google Scholar
10. B. S. Krumgalz, J. Chem. Soc. Faraday Trans. 1. 79 (1983) 571.10.1039/f19837900571Search in Google Scholar
11. D. S. Gill, M. S. Chauhan, Z. Phys. Chem. Neue Folge. 140 (1984) 149.10.1524/zpch.1984.140.2.149Search in Google Scholar
12. D. S. Gill, K. S. Arora, B. Singh, M. S. Bakshi, M. S. Chauhan, J. Chem. Soc. Faraday Trans. 1. 87 (1991) 1159.10.1039/FT9918701159Search in Google Scholar
13. A. Wypych- Stasiewicz, A. Borun, J. Benko, A. Bald, J. Mol. Liq. 178 (2013) 84.10.1016/j.molliq.2012.11.028Search in Google Scholar
14. A. Wypych- Stasiewicz, A. Borun, J. Benko, A. Bald, J. Mol. Liq. 190 (2014) 54.10.1016/j.molliq.2013.10.023Search in Google Scholar
15. D. S. Gill, M. S. Chauhan, Z. Phys. Chem. Neue Folge. Bd. S. 140 (1984) 139.10.1524/zpch.1984.140.2.139Search in Google Scholar
16. R. L. Kay, D. F. Evans, J. Phys. Chem. 70 (1966) 2325.10.1021/j100879a040Search in Google Scholar
17. D. S. Gill, Electrochim. Acta. 24 (1979) 701.10.1016/0013-4686(79)87054-1Search in Google Scholar
18. R. C. Paul, D. S. Gill, S. P. Narula, Indian J. Chem. 8 (1970) 936.Search in Google Scholar
19. F. Accascina, S. Petrucci, R. M. Fuoss, J. Am. Chem. Soc. 81 (1959) 1301.10.1021/ja01515a010Search in Google Scholar
20. N. Saha, B. Das, J. Chem. Eng. Data. 42 (1997) 227.10.1021/je960205gSearch in Google Scholar
21. D. S. Gill, J. Chem. Soc. Faraday Trans. 1. 77 (1981) 751.10.1039/f19817700751Search in Google Scholar
22. R. M. Fuoss, L. Onsager, J. Phys. Chem. 61 (1957) 668.10.1021/j150551a038Search in Google Scholar
23. D. S. Gill, A. N. Sharma, J. Chem. Soc. Faraday Trans. 1. 78 (1982) 465.10.1039/f19827800465Search in Google Scholar
24. D. S. Gill, M. B. Sekhri, J. Chem. Soc. Faraday Trans. 1. 78 (1982) 119.10.1039/f19827800119Search in Google Scholar
25. D. S. Gill, J. S. Cheema, Electrochim. Acta. 27 (1982) 755.10.1016/0013-4686(82)85070-6Search in Google Scholar
26. D. S. Gill, J. S. Cheema, Electrochim. Acta. 27 (1982) 1267.10.1016/0013-4686(82)80147-3Search in Google Scholar
27. D. S. Gill, B. K. Vermani, R. P. Sharma, J. Mol. Liquids. 124 (2006) 58.10.1016/j.molliq.2005.07.006Search in Google Scholar
28. N. Bjerrum, Kgl. Dan. Vidensk. Selsk. 7 (1926) 1; Chem. Abstr. 22 (1928) 1263.Search in Google Scholar
29. M. A. Matesich, J. A. Nadas, D. F. Evans, J. Phys. Chem. 74 (1970) 4568.10.1021/j100720a018Search in Google Scholar
30. D. S. Gill, N. Kumari, M. S. Chauhan, J. Chem. Soc. Faraday Trans. 1. 81 (1985) 687.10.1039/f19858100687Search in Google Scholar
31. A. D. Aprano, R. M. Fuoss, J. Sol. Chem. 3 (1974) 45.10.1007/BF00649495Search in Google Scholar
32. D. S. Gill, Electrochim. Acta. 22 (1977) 491.10.1016/0013-4686(77)85107-4Search in Google Scholar
33. D. S. Gill, R. Nording, Z. Phys. Chem. Neue Folge. 136 (1983) 117.10.1524/zpch.1983.136.136.117Search in Google Scholar
34. J. F. Coetzee, G. P. Gunningham, J. Am. Chem. Soc. 87 (1965) 2529.10.1021/ja01090a001Search in Google Scholar
35. D. S. Gill, J. S. Cheema, Z. Phys. Chem. Neue Folge. 134 (1983) 205.10.1524/zpch.1983.134.2.205Search in Google Scholar
36. S. Sunder, G. Marrosu, Z. Phys. Chem. Neue Folge. 105 (1977) 157.10.1524/zpch.1977.105.3_4.157Search in Google Scholar
37. S. Subramanian, J. C. Ahluwalia, J. Phys. Chem. 72 (1968) 25.10.1021/j100853a094Search in Google Scholar
38. S. Sunder, B. Chawla, J. C. Ahluwalia, Z. Phys. Chem. 78 (1974) 738.10.1021/j100600a019Search in Google Scholar
39. G. Jones, M. Dole, J. Am. Chem. Soc. 51 (1929) 2950.10.1021/ja01385a012Search in Google Scholar
40. J. C. Justice, Electrochim. Acta. 16 (1971) 701.10.1016/0013-4686(71)85038-7Search in Google Scholar
41. Y. Matsuda, M. Morita, M. Ihara, M. Ishikawa, J. Electrochem. Soc. 140 (1993) L109.10.1149/1.2220779Search in Google Scholar
42. M. Ue, M Takeda, M. Takehara, S. Mori, J. Electrochem. Soc. 144 (1997) 2684.10.1149/1.1837882Search in Google Scholar
43. T. Han, M. Park, J. Kim, J. H. Kim, K. Kim, Chem. Sci. 7 (2016) 1791.10.1039/C5SC02755ASearch in Google Scholar
©2016 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Spectroscopic, Quantum Chemical, Physical and Antioxidant Studies on 2-Amino 4-Picolinium 4-Nitrobenzoate – An Organic Crystal for Nonlinear Optical and Biological Applications
- Density Functional Theory Calculations, Spectroscopic (FT-IR, FT-RAMAN), Frontier Molecular Orbital, Molecular Electrostatic Potential Analysis of 5-Fluoro-2-Methylbenzaldehyde
- A Green Approach to the Synthesis of Reduced Graphene Oxide using Sodium Humate
- Sintered Carbon Nanomaterials: Structural Change and Adsorption Properties
- Sonochemical Synthesis of Nanostructured ZnO/Ag Composites in an Ionic Liquid
- Preparation and Characterization of Al2O3 Doped TiO2 Nanocomposites Prepared from Simple Sol-Gel Method
- Solvation of Some Tetraalkylammonium Salts Investigated Conductometrically and Viscometrically in Binary Mixtures of Acetonitrile + Methanol at 298.15 K
- Volumetric, Ultrasonic and Viscometric Studies of Aspirin in the Presence of 1-Octyl-3-Methylimidazolium Bromide Ionic Liquid in Acetonitrile Solutions at T=(288.15–318.15) K
Articles in the same Issue
- Frontmatter
- Spectroscopic, Quantum Chemical, Physical and Antioxidant Studies on 2-Amino 4-Picolinium 4-Nitrobenzoate – An Organic Crystal for Nonlinear Optical and Biological Applications
- Density Functional Theory Calculations, Spectroscopic (FT-IR, FT-RAMAN), Frontier Molecular Orbital, Molecular Electrostatic Potential Analysis of 5-Fluoro-2-Methylbenzaldehyde
- A Green Approach to the Synthesis of Reduced Graphene Oxide using Sodium Humate
- Sintered Carbon Nanomaterials: Structural Change and Adsorption Properties
- Sonochemical Synthesis of Nanostructured ZnO/Ag Composites in an Ionic Liquid
- Preparation and Characterization of Al2O3 Doped TiO2 Nanocomposites Prepared from Simple Sol-Gel Method
- Solvation of Some Tetraalkylammonium Salts Investigated Conductometrically and Viscometrically in Binary Mixtures of Acetonitrile + Methanol at 298.15 K
- Volumetric, Ultrasonic and Viscometric Studies of Aspirin in the Presence of 1-Octyl-3-Methylimidazolium Bromide Ionic Liquid in Acetonitrile Solutions at T=(288.15–318.15) K