Density Functional Theory Calculations, Spectroscopic (FT-IR, FT-RAMAN), Frontier Molecular Orbital, Molecular Electrostatic Potential Analysis of 5-Fluoro-2-Methylbenzaldehyde
Abstract
The FT-IR and FT-Raman spectra of 5-fluoro-2-methylbenzaldehyde (5F2MB) have been recorded in the regions 4000–400 cm−1 and 4000–100 cm−1, respectively. Using the observed FT-IR and FT-Raman data, a complete vibrational assignment and analysis of the fundamental modes of vibrations of the compound were carried out. The optimum molecular geometry, vibrational frequencies and Raman scattering activities were calculated by density functional theory with B3LYP/6-311+G** basis sets. A close agreement was achieved between the calculated and observed frequencies by refinement of scale factors. Unambiguously normal modes of vibrational assignments have been made with the help of the GUASSVIEW 5.0 program and the potential energy distribution (PED) calculated by the density functional theory calculations. Natural bonding orbital (NBO) analyses were carried out to discuss the stability of the molecule. The molecular electrostatic potential (MEP) map and electron density map were drawn and analyzed. Using nuclear magnetic resonance (NMR) analysis, the chemical shifts of hydrogen atoms and carbon atoms were calculated. The charge distribution, Mullikan atomic charge values and HOMO–LUMO energy have been calculated to explore the reasons for the change in biological activity. Furthermore, the first hyperpolarizability and the dipole moment of the molecule have also been calculated.
Acknowledgments
The author I. Sehar is grateful to University Grants Commission (UGC), New Delhi, for permitting him to do his research under FDP-XII Plan. The authors are also thankful to Sophisticated Analytical Instrumentation Facility (SAIF), IIT Chennai for providing spectral measurements.
References
1. P. N. Edwards, Uses of Flourine in Chemotherapy in Organoflourine Chemistry: Principles and Applications, Plenum Press, New York (1994).Search in Google Scholar
2. R. E. Banks, B. E. Smart, J. C. Tatlow (Eds.), Organoflourine Chemistry: Principals and Applications, Plenum Press, New York (1994).10.1007/978-1-4899-1202-2Search in Google Scholar
3. M. Hudlicky, A. E. Pavalath (Eds.), Chemistry of organic Fluorine Compounds II. A Critical Review, American Chemical Society, Washington, DC (1995).Search in Google Scholar
4. R. Filler, R. Saha, Future Med. Chem. 5 (2009) 777.10.4155/fmc.09.65Search in Google Scholar
5. I. Lopez Tocon, M. S. Wolley, J. C. Otero, J. T. Marcos, J. Mol. Struct. 470 (1998) 241.10.1016/S0022-2860(98)00376-7Search in Google Scholar
6. B. A. Hess Jr., J. Schaad, P. Carsky, R. Zaharaduick, Chem. Rev. 86 (1986) 709.10.1021/cr00074a004Search in Google Scholar
7. G. Rauhut, P. Pulay, J. Phys. Chem. 99 (1995) 3093.10.1021/j100010a019Search in Google Scholar
8. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 2009, Revision A.02 Gaussian, Inc., Wallingford, CT (2009).Search in Google Scholar
9. A. D. Becke, Phys. Rev. A 38 (1998) 3098.10.1103/PhysRevA.38.3098Search in Google Scholar
10. C. Lee, W. Yang, R. G. Parr, Phys. Rev. BB7 (1998) 785.Search in Google Scholar
11. A. Frisch, A. B. Neilson, A. J. Holder, GAUSSVIEW User Manual, Gaussian Inc., Pittsburgh, CT (2009).Search in Google Scholar
12. T. Sundius, MOLVIB (V.7.0): Calculations of Harmonic Force Fields and Vibrational Modes of Molecules, QCPE Program No. 807 (2002).Search in Google Scholar
13. T. Sundius, Vib. Spectrosc. 29 (2002) 89.10.1016/S0924-2031(01)00189-8Search in Google Scholar
14. P. L. Polavarapu, J. Phys. Chem. 94 (1990) 8106.10.1021/j100384a024Search in Google Scholar
15. G. Keresztury, in Hand book of Vibrational Spectroscopy. Volume 1 (Eds. J. M. Chalmers, P. R. Griffiths), John Wiley & Sons Ltd., Chichester, UK (2002).Search in Google Scholar
16. G. Keresztury, S. Holly, J. Varga, G. Besenyei, A. Y. Wang, J. R. Durig, Spectrochim. Acta A 49 (1993) 2007.10.1016/S0584-8539(09)91012-1Search in Google Scholar
17. G. Fogarasi, P. Pulay, J. R. Durig (Eds.), Vibrational Spectra and Structure, Volume 14, Elsevier, Amsterdam (1985), P. 125, (Chapter 3).Search in Google Scholar
18. G. Fogarasi, X. Zhou, P. W. Taylor, P. Pulay, J. Am. Chem. Soc. 114 (1992) 8191.10.1021/ja00047a032Search in Google Scholar
19. Y. Morino, T. Shimanouchi, Pure. Appl. Chem. 50 (1978) 1707.10.1351/pac197850111707Search in Google Scholar
20. V. Krishnakumar, K. Mangaiarkkarasi, R. Mathammal, N. Prabavathi, N. Surumbarkuzhlali, Spectrochim. Acta Part A 112 (2013) 429.10.1016/j.saa.2013.04.037Search in Google Scholar
21. V. KrishnaKumar, R. Sangeetha, R. Mathammal, D. Bharathi, Spectrochim. Acta Part A 104 (2013) 77.10.1016/j.saa.2012.10.002Search in Google Scholar
22. R. L. Peesole, L. D. Shield, I. C. McWilliam, Modern Methods of Chemical Analysis, Wiley, New York (1976).Search in Google Scholar
23. D. N. Sathyanarayana, Vibrational Spectroscopy – Theory and Applications, second ed., New Age international (P) Limited Publishers, New Delhi (2004).Search in Google Scholar
24. B. Smith, Infrared Spectral Interpretation, A Systematic Approach, CRC Press, Washington, DC (1999).Search in Google Scholar
25. V. Krishnakumar, N. Surumbarkuzhali, J. Raman Spectrosc. 41 (2010) 473.10.1002/jrs.2460Search in Google Scholar
26. M. Silverstein, G. Clayton Bassler, C. Morrill, Spectrometric Identification of Organic Compounds, Wiley, New York (1981).Search in Google Scholar
27. D. O’Hagan, Chem. Soc. Rev. 37 (2008) 308.10.1039/B711844ASearch in Google Scholar
28. E. F. Mooney, Spectrochim. Acta 20 (1964) 1021.10.1016/0371-1951(64)80102-8Search in Google Scholar
29. M. Honda, A. Fujji, E. Fujimaki, T. Ebata, N. Mikami, J. Phys. 7 (1969) 250.Search in Google Scholar
30. K. Shashidar, R. K. Suryanarayana, E. S. Jayadevappa, Spectrochim. Acta 26 (1970) 2373.10.1016/0584-8539(70)80191-XSearch in Google Scholar
31. M. S. Navti, M. A. Shashidar, Indian J. Phys. 668 (1994) 371.10.1038/371668a0Search in Google Scholar
32. N. Sundaraganesan, C. Meganathan, B. Domnic Joshua, P. Mani, A. Jayaprakash, Spectrochim. Acta A 71 (2008) 1134.10.1016/j.saa.2008.03.019Search in Google Scholar
33. S. J. Bunce, H. G. Edwards, A. F. Johnson, I. R. Lewis, P. H. Turner, Spectrochim. Acta, Part A 49 (1993) 775.10.1016/0584-8539(93)80102-GSearch in Google Scholar
34. V. Krishna Kumar, S. Suganya, R. Mathammal, Spectrochim. Acta Part A: Mol. Bio. Spectros. 125 (2014) 201.10.1016/j.saa.2013.12.070Search in Google Scholar PubMed
35. D. A. Kleinman, Phy. Rev. 126 (1962) 1977.10.1103/PhysRev.126.1977Search in Google Scholar
36. D. Sajan, I. Hubert Joe, V. S. Jayakumar, J. Zaleski, J. Mol. Struct. 43 (2006) 785.10.1016/j.molstruc.2005.09.041Search in Google Scholar
37. I. Fleming, Frontier Orbitals and Organic Chemical Reactions, Wiley, London (1976).Search in Google Scholar
38. M. Kandasamy, G. Velraj, S. Kalaichelvan, Spectrochim. Acta A 105 (2013) 176.10.1016/j.saa.2012.11.065Search in Google Scholar PubMed
39. A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev. 88 (1988) 899.10.1021/cr00088a005Search in Google Scholar
40. C. James, A. Amal Raj, R. Rehunathan, I. Hubest Joe, V. S. Jaya Kumar, J. Raman Spectrosc. 379 (2006) 381.Search in Google Scholar
41. R. Ditchfield, J. Chem. Phys. 56 (1972) 5688.10.1063/1.1677088Search in Google Scholar
42. T. Schlick, Molecular Modeling and Simulation: An Interdisciplinary Guide, Volume 21, second ed., Springer, New York (2010).10.1007/978-1-4419-6351-2Search in Google Scholar
43. M. J. Frisch, J. A. Pople, J. S. Binkley, J. Chem. Phys. 80 (1984) 3265.10.1063/1.447079Search in Google Scholar
44. H. O. Kalinowski, S. Berger, S. Braun, Carbon-13 NMR Spectroscopy, John Wiley & Sons, Chichester (1988).10.1016/S0003-2670(00)81981-9Search in Google Scholar
45. C. H. Choi, M. Kertez, J. Phy. Chem. A 101 (1997) 3823.10.1021/jp970620vSearch in Google Scholar
46. S. Gunasekaran, R. Arun Balaji, S. Kumaresan, G. Anand, S. Srinivasan, Can. J. Anal. Sci.Spectrosc. 53 (2008) 149.Search in Google Scholar
47. D. F. V. Lewis, C. Ioannides, D. V. Parke, Xenobiotica 24 (1994) 401.10.3109/00498259409043243Search in Google Scholar PubMed
48. K. Fukui, Science 218 (1982) 747.10.1126/science.218.4574.747Search in Google Scholar PubMed
49. P. Udhayakala, T. V. Rajendiran, S. Seshadri, S. Gunasekaran, J. Chem. Pharm. Res. 3 (2011) 610.Search in Google Scholar
50. V. Krishnakumar, D. Barathi, R. Mathammal, J. Balamani, N. Jeyamani, Spectrochim. Acta, Part A 121 (2014) 245.10.1016/j.saa.2013.10.068Search in Google Scholar PubMed
51. P. Politzer, F. Abu-Awwad, Theor. Chim. Acta 99 (1998) 83.10.1007/s002140050307Search in Google Scholar
52. R. G. Parr, L. von Szentpaly, S. Liu, J. Am. Chem. Soc. 121 (1999) 1922.10.1021/ja983494xSearch in Google Scholar
53. R. S. Mulliken, J. Chem. Phys. 2 (1934) 782.10.1063/1.1749394Search in Google Scholar
54. V. K. Rastogi, M. A. Palafox, L. Mittal, N. Peica, W. Kiefer, K. Lang, P. Ohja, J. Raman Spectrosc. 38 (2007) 1227.10.1002/jrs.1725Search in Google Scholar
55. J. S. Murray, K. Sen, Molecular Electrostatic Potentials, Concepts and Applications, Elsevier, Amsterdam (1996).Search in Google Scholar
56. E. Scrocco, J. Tomasi, Adv. Quantum Chem. 11 (1978) 115.10.1016/S0065-3276(08)60236-1Search in Google Scholar
57. K. Carthigayan, S. Xavier, S. Periyandi, Spectrochim. Acta 142 (2015) 350.10.1016/j.saa.2015.02.035Search in Google Scholar PubMed
58. A. R. Katritzky, A. F. Pozharski, Handbook of Heterocyclic Chemistry, second ed., Elsevier, Pergamon (2000).Search in Google Scholar
Supplemental Material:
The online version of this article (DOI: 10.1515/zpch-2016-0839) offers supplementary material, available to authorized users.
©2016 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Spectroscopic, Quantum Chemical, Physical and Antioxidant Studies on 2-Amino 4-Picolinium 4-Nitrobenzoate – An Organic Crystal for Nonlinear Optical and Biological Applications
- Density Functional Theory Calculations, Spectroscopic (FT-IR, FT-RAMAN), Frontier Molecular Orbital, Molecular Electrostatic Potential Analysis of 5-Fluoro-2-Methylbenzaldehyde
- A Green Approach to the Synthesis of Reduced Graphene Oxide using Sodium Humate
- Sintered Carbon Nanomaterials: Structural Change and Adsorption Properties
- Sonochemical Synthesis of Nanostructured ZnO/Ag Composites in an Ionic Liquid
- Preparation and Characterization of Al2O3 Doped TiO2 Nanocomposites Prepared from Simple Sol-Gel Method
- Solvation of Some Tetraalkylammonium Salts Investigated Conductometrically and Viscometrically in Binary Mixtures of Acetonitrile + Methanol at 298.15 K
- Volumetric, Ultrasonic and Viscometric Studies of Aspirin in the Presence of 1-Octyl-3-Methylimidazolium Bromide Ionic Liquid in Acetonitrile Solutions at T=(288.15–318.15) K
Articles in the same Issue
- Frontmatter
- Spectroscopic, Quantum Chemical, Physical and Antioxidant Studies on 2-Amino 4-Picolinium 4-Nitrobenzoate – An Organic Crystal for Nonlinear Optical and Biological Applications
- Density Functional Theory Calculations, Spectroscopic (FT-IR, FT-RAMAN), Frontier Molecular Orbital, Molecular Electrostatic Potential Analysis of 5-Fluoro-2-Methylbenzaldehyde
- A Green Approach to the Synthesis of Reduced Graphene Oxide using Sodium Humate
- Sintered Carbon Nanomaterials: Structural Change and Adsorption Properties
- Sonochemical Synthesis of Nanostructured ZnO/Ag Composites in an Ionic Liquid
- Preparation and Characterization of Al2O3 Doped TiO2 Nanocomposites Prepared from Simple Sol-Gel Method
- Solvation of Some Tetraalkylammonium Salts Investigated Conductometrically and Viscometrically in Binary Mixtures of Acetonitrile + Methanol at 298.15 K
- Volumetric, Ultrasonic and Viscometric Studies of Aspirin in the Presence of 1-Octyl-3-Methylimidazolium Bromide Ionic Liquid in Acetonitrile Solutions at T=(288.15–318.15) K