Home Density Functional Theory Calculations, Spectroscopic (FT-IR, FT-RAMAN), Frontier Molecular Orbital, Molecular Electrostatic Potential Analysis of 5-Fluoro-2-Methylbenzaldehyde
Article
Licensed
Unlicensed Requires Authentication

Density Functional Theory Calculations, Spectroscopic (FT-IR, FT-RAMAN), Frontier Molecular Orbital, Molecular Electrostatic Potential Analysis of 5-Fluoro-2-Methylbenzaldehyde

  • Sehar Iyasamy , Krishnakumar Varadharajan EMAIL logo and Sivakumar Sivagnanam
Published/Copyright: October 12, 2016

Abstract

The FT-IR and FT-Raman spectra of 5-fluoro-2-methylbenzaldehyde (5F2MB) have been recorded in the regions 4000–400 cm−1 and 4000–100 cm−1, respectively. Using the observed FT-IR and FT-Raman data, a complete vibrational assignment and analysis of the fundamental modes of vibrations of the compound were carried out. The optimum molecular geometry, vibrational frequencies and Raman scattering activities were calculated by density functional theory with B3LYP/6-311+G** basis sets. A close agreement was achieved between the calculated and observed frequencies by refinement of scale factors. Unambiguously normal modes of vibrational assignments have been made with the help of the GUASSVIEW 5.0 program and the potential energy distribution (PED) calculated by the density functional theory calculations. Natural bonding orbital (NBO) analyses were carried out to discuss the stability of the molecule. The molecular electrostatic potential (MEP) map and electron density map were drawn and analyzed. Using nuclear magnetic resonance (NMR) analysis, the chemical shifts of hydrogen atoms and carbon atoms were calculated. The charge distribution, Mullikan atomic charge values and HOMO–LUMO energy have been calculated to explore the reasons for the change in biological activity. Furthermore, the first hyperpolarizability and the dipole moment of the molecule have also been calculated.

Acknowledgments

The author I. Sehar is grateful to University Grants Commission (UGC), New Delhi, for permitting him to do his research under FDP-XII Plan. The authors are also thankful to Sophisticated Analytical Instrumentation Facility (SAIF), IIT Chennai for providing spectral measurements.

References

1. P. N. Edwards, Uses of Flourine in Chemotherapy in Organoflourine Chemistry: Principles and Applications, Plenum Press, New York (1994).Search in Google Scholar

2. R. E. Banks, B. E. Smart, J. C. Tatlow (Eds.), Organoflourine Chemistry: Principals and Applications, Plenum Press, New York (1994).10.1007/978-1-4899-1202-2Search in Google Scholar

3. M. Hudlicky, A. E. Pavalath (Eds.), Chemistry of organic Fluorine Compounds II. A Critical Review, American Chemical Society, Washington, DC (1995).Search in Google Scholar

4. R. Filler, R. Saha, Future Med. Chem. 5 (2009) 777.10.4155/fmc.09.65Search in Google Scholar

5. I. Lopez Tocon, M. S. Wolley, J. C. Otero, J. T. Marcos, J. Mol. Struct. 470 (1998) 241.10.1016/S0022-2860(98)00376-7Search in Google Scholar

6. B. A. Hess Jr., J. Schaad, P. Carsky, R. Zaharaduick, Chem. Rev. 86 (1986) 709.10.1021/cr00074a004Search in Google Scholar

7. G. Rauhut, P. Pulay, J. Phys. Chem. 99 (1995) 3093.10.1021/j100010a019Search in Google Scholar

8. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 2009, Revision A.02 Gaussian, Inc., Wallingford, CT (2009).Search in Google Scholar

9. A. D. Becke, Phys. Rev. A 38 (1998) 3098.10.1103/PhysRevA.38.3098Search in Google Scholar

10. C. Lee, W. Yang, R. G. Parr, Phys. Rev. BB7 (1998) 785.Search in Google Scholar

11. A. Frisch, A. B. Neilson, A. J. Holder, GAUSSVIEW User Manual, Gaussian Inc., Pittsburgh, CT (2009).Search in Google Scholar

12. T. Sundius, MOLVIB (V.7.0): Calculations of Harmonic Force Fields and Vibrational Modes of Molecules, QCPE Program No. 807 (2002).Search in Google Scholar

13. T. Sundius, Vib. Spectrosc. 29 (2002) 89.10.1016/S0924-2031(01)00189-8Search in Google Scholar

14. P. L. Polavarapu, J. Phys. Chem. 94 (1990) 8106.10.1021/j100384a024Search in Google Scholar

15. G. Keresztury, in Hand book of Vibrational Spectroscopy. Volume 1 (Eds. J. M. Chalmers, P. R. Griffiths), John Wiley & Sons Ltd., Chichester, UK (2002).Search in Google Scholar

16. G. Keresztury, S. Holly, J. Varga, G. Besenyei, A. Y. Wang, J. R. Durig, Spectrochim. Acta A 49 (1993) 2007.10.1016/S0584-8539(09)91012-1Search in Google Scholar

17. G. Fogarasi, P. Pulay, J. R. Durig (Eds.), Vibrational Spectra and Structure, Volume 14, Elsevier, Amsterdam (1985), P. 125, (Chapter 3).Search in Google Scholar

18. G. Fogarasi, X. Zhou, P. W. Taylor, P. Pulay, J. Am. Chem. Soc. 114 (1992) 8191.10.1021/ja00047a032Search in Google Scholar

19. Y. Morino, T. Shimanouchi, Pure. Appl. Chem. 50 (1978) 1707.10.1351/pac197850111707Search in Google Scholar

20. V. Krishnakumar, K. Mangaiarkkarasi, R. Mathammal, N. Prabavathi, N. Surumbarkuzhlali, Spectrochim. Acta Part A 112 (2013) 429.10.1016/j.saa.2013.04.037Search in Google Scholar

21. V. KrishnaKumar, R. Sangeetha, R. Mathammal, D. Bharathi, Spectrochim. Acta Part A 104 (2013) 77.10.1016/j.saa.2012.10.002Search in Google Scholar

22. R. L. Peesole, L. D. Shield, I. C. McWilliam, Modern Methods of Chemical Analysis, Wiley, New York (1976).Search in Google Scholar

23. D. N. Sathyanarayana, Vibrational Spectroscopy – Theory and Applications, second ed., New Age international (P) Limited Publishers, New Delhi (2004).Search in Google Scholar

24. B. Smith, Infrared Spectral Interpretation, A Systematic Approach, CRC Press, Washington, DC (1999).Search in Google Scholar

25. V. Krishnakumar, N. Surumbarkuzhali, J. Raman Spectrosc. 41 (2010) 473.10.1002/jrs.2460Search in Google Scholar

26. M. Silverstein, G. Clayton Bassler, C. Morrill, Spectrometric Identification of Organic Compounds, Wiley, New York (1981).Search in Google Scholar

27. D. O’Hagan, Chem. Soc. Rev. 37 (2008) 308.10.1039/B711844ASearch in Google Scholar

28. E. F. Mooney, Spectrochim. Acta 20 (1964) 1021.10.1016/0371-1951(64)80102-8Search in Google Scholar

29. M. Honda, A. Fujji, E. Fujimaki, T. Ebata, N. Mikami, J. Phys. 7 (1969) 250.Search in Google Scholar

30. K. Shashidar, R. K. Suryanarayana, E. S. Jayadevappa, Spectrochim. Acta 26 (1970) 2373.10.1016/0584-8539(70)80191-XSearch in Google Scholar

31. M. S. Navti, M. A. Shashidar, Indian J. Phys. 668 (1994) 371.10.1038/371668a0Search in Google Scholar

32. N. Sundaraganesan, C. Meganathan, B. Domnic Joshua, P. Mani, A. Jayaprakash, Spectrochim. Acta A 71 (2008) 1134.10.1016/j.saa.2008.03.019Search in Google Scholar

33. S. J. Bunce, H. G. Edwards, A. F. Johnson, I. R. Lewis, P. H. Turner, Spectrochim. Acta, Part A 49 (1993) 775.10.1016/0584-8539(93)80102-GSearch in Google Scholar

34. V. Krishna Kumar, S. Suganya, R. Mathammal, Spectrochim. Acta Part A: Mol. Bio. Spectros. 125 (2014) 201.10.1016/j.saa.2013.12.070Search in Google Scholar PubMed

35. D. A. Kleinman, Phy. Rev. 126 (1962) 1977.10.1103/PhysRev.126.1977Search in Google Scholar

36. D. Sajan, I. Hubert Joe, V. S. Jayakumar, J. Zaleski, J. Mol. Struct. 43 (2006) 785.10.1016/j.molstruc.2005.09.041Search in Google Scholar

37. I. Fleming, Frontier Orbitals and Organic Chemical Reactions, Wiley, London (1976).Search in Google Scholar

38. M. Kandasamy, G. Velraj, S. Kalaichelvan, Spectrochim. Acta A 105 (2013) 176.10.1016/j.saa.2012.11.065Search in Google Scholar PubMed

39. A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev. 88 (1988) 899.10.1021/cr00088a005Search in Google Scholar

40. C. James, A. Amal Raj, R. Rehunathan, I. Hubest Joe, V. S. Jaya Kumar, J. Raman Spectrosc. 379 (2006) 381.Search in Google Scholar

41. R. Ditchfield, J. Chem. Phys. 56 (1972) 5688.10.1063/1.1677088Search in Google Scholar

42. T. Schlick, Molecular Modeling and Simulation: An Interdisciplinary Guide, Volume 21, second ed., Springer, New York (2010).10.1007/978-1-4419-6351-2Search in Google Scholar

43. M. J. Frisch, J. A. Pople, J. S. Binkley, J. Chem. Phys. 80 (1984) 3265.10.1063/1.447079Search in Google Scholar

44. H. O. Kalinowski, S. Berger, S. Braun, Carbon-13 NMR Spectroscopy, John Wiley & Sons, Chichester (1988).10.1016/S0003-2670(00)81981-9Search in Google Scholar

45. C. H. Choi, M. Kertez, J. Phy. Chem. A 101 (1997) 3823.10.1021/jp970620vSearch in Google Scholar

46. S. Gunasekaran, R. Arun Balaji, S. Kumaresan, G. Anand, S. Srinivasan, Can. J. Anal. Sci.Spectrosc. 53 (2008) 149.Search in Google Scholar

47. D. F. V. Lewis, C. Ioannides, D. V. Parke, Xenobiotica 24 (1994) 401.10.3109/00498259409043243Search in Google Scholar PubMed

48. K. Fukui, Science 218 (1982) 747.10.1126/science.218.4574.747Search in Google Scholar PubMed

49. P. Udhayakala, T. V. Rajendiran, S. Seshadri, S. Gunasekaran, J. Chem. Pharm. Res. 3 (2011) 610.Search in Google Scholar

50. V. Krishnakumar, D. Barathi, R. Mathammal, J. Balamani, N. Jeyamani, Spectrochim. Acta, Part A 121 (2014) 245.10.1016/j.saa.2013.10.068Search in Google Scholar PubMed

51. P. Politzer, F. Abu-Awwad, Theor. Chim. Acta 99 (1998) 83.10.1007/s002140050307Search in Google Scholar

52. R. G. Parr, L. von Szentpaly, S. Liu, J. Am. Chem. Soc. 121 (1999) 1922.10.1021/ja983494xSearch in Google Scholar

53. R. S. Mulliken, J. Chem. Phys. 2 (1934) 782.10.1063/1.1749394Search in Google Scholar

54. V. K. Rastogi, M. A. Palafox, L. Mittal, N. Peica, W. Kiefer, K. Lang, P. Ohja, J. Raman Spectrosc. 38 (2007) 1227.10.1002/jrs.1725Search in Google Scholar

55. J. S. Murray, K. Sen, Molecular Electrostatic Potentials, Concepts and Applications, Elsevier, Amsterdam (1996).Search in Google Scholar

56. E. Scrocco, J. Tomasi, Adv. Quantum Chem. 11 (1978) 115.10.1016/S0065-3276(08)60236-1Search in Google Scholar

57. K. Carthigayan, S. Xavier, S. Periyandi, Spectrochim. Acta 142 (2015) 350.10.1016/j.saa.2015.02.035Search in Google Scholar PubMed

58. A. R. Katritzky, A. F. Pozharski, Handbook of Heterocyclic Chemistry, second ed., Elsevier, Pergamon (2000).Search in Google Scholar


Supplemental Material:

The online version of this article (DOI: 10.1515/zpch-2016-0839) offers supplementary material, available to authorized users.


Received: 2016-6-30
Accepted: 2016-7-18
Published Online: 2016-10-12
Published in Print: 2016-12-1

©2016 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 16.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2016-0839/html
Scroll to top button