Abstract
Phytochemical investigation of the aerial roots of Ficus sur, a Cameroonian medicinal plant, resulted in a previously undescribed cerebroside, suroside (1), in addition to its aglycon congener suramide (2). Moreover, six known natural products including alpinumisoflavone (3), wighteone metabolite (4), oleanolic acid (5), β-sitosterol (6), β-sitosterol-3-O-β-D-glucopyranoside (7), and epi-ѱ-taraxastanolone (8) were identified. The structures of the previously undescribed compounds were determined by analysis of 1D and 2D-NMR (One and two dimensional nuclear magnetic resonance), mass spectrometry, chemical conversion, and by comparison of these data with those from the literature. Wighteone metabolite (4) exhibited a weak cytotoxic activity against the human HepG2 hepatocellular carcinoma cells with an IC50 value of 51.9 µM.
Acknowledgments
The authors acknowledge funding from Georg Forster Humboldt Foundation postdoctoral fellowship awarded to Sergi H. Akone (Ref 3.4 – CMR – 1207570 – GF-P). The authors thank Alexandra Amann, and Stefanie Schmidt for performing bioactivity assays.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Rafael, MP, Marcela, GD, Bruno, SAFB, Gustavo, PC, Maria, GLB, Guilherme, O. Medicinal plants recommended by the World Health Organization: DNA barcode identification associated with chemical analyses guarantees their quality. PLoS One 2015;10:5. https://doi.org/10.1371/journal.pone.0127866.Search in Google Scholar PubMed PubMed Central
2. Victor, K, Thomas, E. Cameroonian medicinal plants: pharmacology and derived natural products. Front Pharmacol 2010;1:123. https://doi.org/10.3389/fphar.2010.00123.Search in Google Scholar PubMed PubMed Central
3. Jean, MT, Xavier, SN, Edwige, LN, Franck, M, Rene, W, Michelle, I, et al.. Biological activities of plant extracts from Ficus elastica and Selaginella vogelli: an antimalarial, antitrypanosomal and cytotoxity evaluation. Saudi J Biol Sci 2018;25:117–22. https://doi.org/10.1016/j.sjbs.2017.07.002.Search in Google Scholar PubMed PubMed Central
4. Enitome, EB, Jennifer, M, Edward, GR, RuAngelie, E-E. Characterisation of the antiproliferative constituents and activity of Ficus exasperata (Vahl) on ovarian cancer cells – a preliminary investigation. Nat Prod Res 2017;31:2164–8. https://doi.org/10.1080/14786419.2016.1277348.Search in Google Scholar PubMed
5. Fidele, N-K, Lydia, LL, Luc, MM, Nnange, E, Luc, COO, Eugene, M, et al.. Cameroonian medicinal plants: a bioactivity versus ethnobotanical survey and chemotaxonomic classification. BMC Compl Alternative Med 2013;13:147. https://doi.org/10.1186/1472-6882-13-147.Search in Google Scholar PubMed PubMed Central
6. Wessel, S, Ernst, J. Ficus sur (Moraceae) and Gymnanthemum coloratum (Asteraceae: Vernonieae) – first distribution records for Namibia. Bothalia – Afr Biodivers Conserv 2015;45:1–5. https://doi.org/10.4102/ABC.V45I1.1865.Search in Google Scholar
7. Shannon, LD, George, DW. On the origin of the fig: phylogenetic relationships of Moraceae from NdhF sequences. Am J Bot 2004;91:767–77. https://doi.org/10.3732/ajb.91.5.767.Search in Google Scholar PubMed
8. Jean, KB, Sufyan, AAM, Anar, SG, Bruno, DL, Didérot, TN, Silvère, N, et al.. Ceramide and cerebroside from the stem bark of Ficus mucuso (Moraceae). Chem Pharm Bull (Tokyo) 2010;58:1661–5. https://doi.org/10.1248/cpb.58.1661.Search in Google Scholar PubMed
9. Amandeep, S, Hayat, MM, Hardeep, K, Lakhvir, K. Investigation of antiplasmodial efficacy of lupeol and ursolic acid isolated from Ficus benjamina leaves extract. Nat Prod Res 2020;34:2514–7. https://doi.org/10.1080/14786419.2018.1540476.Search in Google Scholar PubMed
10. Ramde-Tiendrebeogo, A, Tibiri, A, Hilou, A, Lompo, M, Millogo-Kone, H, Nacoulma, OG, et al.. Antioxidative and antibacterial activities of phenolic compounds from Ficus sur Forssk. and Ficus sycomorus L. (Moraceae): potential for sickle cell disease treatment in Burkina Faso. Int J Biol Chem Sci 2012;6:328–36. https://doi.org/10.4314/ijbcs.v6i1.29.Search in Google Scholar
11. Yi-Ming, C, Jang-Yang, C, Ching-Chuan, K, Chi-Yen, C, Yueh-Hsiung, K. Cytotoxic triterpenes from the aerial roots of Ficus microcarpa. Phytochemistry 2005;66:495–501. https://doi.org/10.1016/j.phytochem.2004.12.026.Search in Google Scholar PubMed
12. Bahare, S, Abhay, PM, Manisha, N, Natallia, K, Ila, S, Anna, K-D, et al.. Ficus plants: state of the art from a phytochemical, pharmacological, and toxicological perspective. Phytother Res 2021;35:1187–217. https://doi.org/10.1002/ptr.6884.Search in Google Scholar PubMed
13. Stevine, PT, Jean, N, Edwige, N, Jean, W, Juliette, V, Anatole, BA. Ficusanol, a new cinnamic acid derivative and other constituents from the roots of Ficus exasperata Vahl. (Moraceae) with antioxidant and cytotoxic activities. Trends Phytochem Res 2020;4:3–8.Search in Google Scholar
14. Stevine, PT, Ahri, DM, Yannick, F, Nathalie, JT, Georges, T, Jean, W, et al.. Ficusanolide A and ficusanolide B, two new cinnamic acid derivative stereoisomers and other constituents of the stem barks of Ficus exasperata Vahl. (Moraceae). Phytochem Lett 2021;43:150–3. https://doi.org/10.1016/j.phytol.2021.03.027.Search in Google Scholar
15. Sandjo, LP, Justin, K, Louis, S, Herve, MP, Bathélémy, N, Yoshihito, S, et al.. Politamide, a new constituent from the stem bark of Ficus polita Vahl (Moraceae). Arkivoc 2010;2010:323–9. https://doi.org/10.3998/ark.5550190.0011.227.Search in Google Scholar
16. Christophe, S, Simeon, FK, Herve, MP, Ingrid, S, Bonaventure, TN, Ivan, RG, et al.. Benjaminamide: a new ceramide and other compounds from the twigs of Ficus benjamina (Moraceae). Biochem Systemat Ecol 2008;36:238–43. https://doi.org/10.1016/j.bse.2007.08.014.Search in Google Scholar
17. Judith, M, Gervais, MH, Gabin, TB, Maurice, DA, Bruno, NL, Simeon, FK, et al.. Chemical constituents from Ficus natalensis Hochst (Moraceae) and their chemophenetic significance. Biochem Systemat Ecol 2021;95:104227. https://doi.org/10.1016/j.bse.2021.104227.Search in Google Scholar
18. Yannick, SF, Jean, JB, Muhammad, SA, Angelbert, FA, Ahmed, Z, Clement, NA, et al.. Flavonoids and other bioactive constituents from Ficus thonningii Blume (Moraceae). Phytochem Lett 2015;11:139–45. https://doi.org/10.1016/j.phytol.2014.11.012.Search in Google Scholar
19. Rodrigue, TK, Gilbert, DK, Jean-Paul, D, Ingrid, KS, Pantaleon, A, Louis, PS, et al.. Isoprenoids and flavonoids with antimicrobial activity from Ficus conraui Warburg (Moraceae). Helv Chim Acta 2011;94:2231–8. https://doi.org/10.1002/hlca.201100173.Search in Google Scholar
20. Kuete, V, Ngameni, B, Fotso, SC, Kengap, TR, Tchaleu, NB, Meyer, M, et al.. Antimicrobial activity of the crude extracts and compounds from Ficus chlamydocarpa and Ficus cordata (Moraceae). J Ethnopharmacol 2008;120:17–24. https://doi.org/10.1016/j.jep.2008.07.026.Search in Google Scholar PubMed
21. Madikizela, B, Ndhlala, AR, Finnie, JF, Staden, VJ. Antimycobacterial, anti-inflammatory and genotoxicity evaluation of plants used for the treatment of tuberculosis and related symptoms in South Africa. J Ethnopharmacol 2014;153:386–91. https://doi.org/10.1016/j.jep.2014.02.034.Search in Google Scholar PubMed
22. Ojukwu, U, Ibekwe, O. Phytochemical and antimicrobial screening and nutritional qualities of Ficus sur (Forsk). Int J Eng Technol Manag Res 2018;5:35–44. https://doi.org/10.29121/ijetmr.v5.i10.2018.300.Search in Google Scholar
23. Sisay, F, Abeba, B. Triterpene compounds from the latex of Ficus sur I. Bull Chem Soc Ethiop 2005;19:307–10. https://doi.org/10.4314/bcse.v19i2.21137.Search in Google Scholar
24. Rénadin, SM, Karsten, K, Hidayat, H, Etienne, D, Paullinoside, A, Paullinomide, A. A new cerebroside and a new ceramide from leaves of Paullinia pinnata. Z Naturforsch B 2006;61:1123–7. https://doi.org/10.1515/znb-2006-0910.Search in Google Scholar
25. Maurice, DA, Pierre, T, Hiroyuki, M. Tricalycoside, a new cerebroside from Tricalysia coriacea (Rubiaceae). Chem Biodivers 2018;15:1. https://doi.org/10.1002/cbdv.201700472.Search in Google Scholar
26. Louis, PS, Victor, K. 15 – ceramides, cerebrosides, and related long chains containing derivatives from the medicinal plants of Africa. In: Kuete, V, editor. Medicinal plant research in Africa. Oxford: Elsevier; 2013.Search in Google Scholar
27. Louis, S, Paul, H, Mehdi, Y, Gilbert, K, Bonaventure, N. Triumfettamide and triumfettoside Ic, two ceramides and other secondary metabolites from the stems of Wild triumfetta, Cordifolia A. Rich. (Tiliaceae). Helv Chim Acta 2008;91:1326–35. https://doi.org/10.1002/hlca.200890144.Search in Google Scholar
28. Klaus, B, Christian, P. Carbon-13 nuclear magnetic resonance spectroscopy of monosaccharides. In: Stuart Tipson, R, Horton, D, editors. Advances in carbohydrate chemistry and biochemistry. Cambridge, MA: Academic Press; 1983, 41:27–66 pp.10.1016/S0065-2318(08)60055-4Search in Google Scholar
29. Samah, A, Rania, M, Hanin, B, Ahmad, N, Amany, I, Sameh, E, et al.. LAMA-1: a cerebroside isolated from the deep-sea-derived fungus Penicillium chrysogenum. Metabolites 2020;10:75. https://doi.org/10.3390/metabo10020075.Search in Google Scholar
30. Masanori, I, Ryuichi, I, Yasuhiro, K, Tomofumi, M, Tetsuya, K, Ryuichi, H. Isolation and structure of three new ceramides from the Starfish acanthaster Planci. Eur J Org Chem 1998;1998:129–31. https://doi.org/10.1002/(SICI)1099-0690(199801)1998:1<129::AID-EJOC129>3.0.CO;2-A.10.1002/(SICI)1099-0690(199801)1998:1<129::AID-EJOC129>3.0.CO;2-ASearch in Google Scholar
31. Ferdinand, T, Bruno, L, Ngouela, S, Louis, K, Bernard, W, Etienne, T, et al.. New sphingolipids and other constituents of Pancovia laurentii. Helv Chim Acta 2010;93:2210–7. https://doi.org/10.1002/hlca.201000078.Search in Google Scholar
32. Francesca, C, Jelena, ZF, Giuditta, S, Banfi, E. New cerebrosides from Euphorbia peplis L.: antimicrobial activity evaluation. Bioorg Med Chem Lett 2003;13:4345–50. https://doi.org/10.1016/j.bmcl.2003.09.044.Search in Google Scholar
33. Brigitte, N, Valerie, TS, Juliette, V, Muhammad, SA, Mehreen, L, Lubna, I, et al.. Urease inhibitory isoflavonoids from different parts of Calopogonium mucunoides (Fabaceae). J Enzym Inhib Med Chem 2013;28:1156–61. https://doi.org/10.3109/14756366.2012.719025.Search in Google Scholar PubMed
34. Hitoshi, T, Toshihiro, T, Hideo, E, Naoharu, W, Mansoor, A, Imran, Q, et al.. Two new isoflavones from Erythrina suberosa Var. Glabrescences. Heterocycles 1998;48:2661. https://doi.org/10.3987/COM-98-8334.Search in Google Scholar
35. José, MC, Sara, R-R, Javier, SP. Oleanolic acid: extraction, characterization and biological activity. Nutrients 2022;14:623. https://doi.org/10.3390/nu14030623.Search in Google Scholar PubMed PubMed Central
36. Ijeoma, O, Tor-Anyiin, T, John, I, Xavier, SN, Rui, K. Isolation and characterisation of stigmasterol and β–sitosterol from Anthocleista djalonensis A. Chev. Asian J Chem Sci 2018;3:1–5. https://doi.org/10.9734/AJOCS/2017/37147.Search in Google Scholar
37. Taha, E-A, Shahira, ME, Ahmed, KH, Aziza, MA, Gehan, MK. Isolation of biologically active constituents from Moringa peregrina (Forssk.) Fiori. (Family: Moringaceae) growing in Egypt. Pharmacogn Mag 2011;7:109–15. https://doi.org/10.4103/0973-1296.80667.Search in Google Scholar PubMed PubMed Central
38. Hinge, VK, Paknikar, SK, Das, KG, Bose, AK, Bhattacharyya, SC. Terpenoids—LXXXVI: structure of epi-ψ-taraxastanonol and epi-ψ-taraxastanediol. Tetrahedron 1966;22:2861–8. https://doi.org/10.1016/S0040-4020(01)99077-5.Search in Google Scholar
39. Brookes, KB, Katsoulis, LC. Bioactive components of Rhoicissus tridentata: a pregnancy-related traditional medicine. South Afr J Sci 2006;102:267–72.Search in Google Scholar
40. Adiilah, MC, Magali, G, Yoko, I, Francoise, S-P, Sébastien, M, Yohann, B. Sphingolipids in plants: a guidebook on their function in membrane architecture, cellular processes, and environmental or developmental responses. FEBS Lett 2020;594:3719–38. https://doi.org/10.1002/1873-3468.13987.Search in Google Scholar PubMed
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Research Articles
- A novel eudesmol derivative from the leaf essential oil of Guatteria friesiana (Annonaceae) and evaluation of the antinociceptive activity
- Chemical constituents of Desmodium triflorum and their antifungal activity against various phytopathogenic fungi
- Exploring phytochemical constituents of Achillea arabica Kotschy. ethanolic flower extract by LC-MS/MS and its possible antioxidant and antidiabetic effects in diabetic rats
- Chemical constituents from Ficus sur Forssk (Moraceae)
- In vitro acetylcholinesterase, tyrosinase inhibitory potentials of secondary metabolites from Euphorbia schimperiana and Euphorbia balsamifera
- Furoquinoline and bisindole alkaloids from the roots of Teclea nobilis and their in-silico molecular docking analysis
- Limonoids and insecticidal activity on Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) of Trichilia catigua A. Juss. (Meliaceae)
- Tissue specific changes of phytochemicals, antioxidant, antidiabetic and anti-inflammatory activities of tea [Camellia sinensis (L.)] extracted with different solvents
- Anonazepine, a new alkaloid from the leaves of Annona muricata (Annonaceae)
- Two new natural products from Portulaca oleracea L. and their bioactivities
Articles in the same Issue
- Frontmatter
- Research Articles
- A novel eudesmol derivative from the leaf essential oil of Guatteria friesiana (Annonaceae) and evaluation of the antinociceptive activity
- Chemical constituents of Desmodium triflorum and their antifungal activity against various phytopathogenic fungi
- Exploring phytochemical constituents of Achillea arabica Kotschy. ethanolic flower extract by LC-MS/MS and its possible antioxidant and antidiabetic effects in diabetic rats
- Chemical constituents from Ficus sur Forssk (Moraceae)
- In vitro acetylcholinesterase, tyrosinase inhibitory potentials of secondary metabolites from Euphorbia schimperiana and Euphorbia balsamifera
- Furoquinoline and bisindole alkaloids from the roots of Teclea nobilis and their in-silico molecular docking analysis
- Limonoids and insecticidal activity on Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) of Trichilia catigua A. Juss. (Meliaceae)
- Tissue specific changes of phytochemicals, antioxidant, antidiabetic and anti-inflammatory activities of tea [Camellia sinensis (L.)] extracted with different solvents
- Anonazepine, a new alkaloid from the leaves of Annona muricata (Annonaceae)
- Two new natural products from Portulaca oleracea L. and their bioactivities