Home human monoamine oxidase (hMAO) A and hMAO B inhibitors from Artemisia dracunculus L. herniarin and skimmin: human mononamine oxidase A and B inhibitors from A. dracunculus L.
Article
Licensed
Unlicensed Requires Authentication

human monoamine oxidase (hMAO) A and hMAO B inhibitors from Artemisia dracunculus L. herniarin and skimmin: human mononamine oxidase A and B inhibitors from A. dracunculus L.

  • Tuba Aydin ORCID logo EMAIL logo , Hulya Akincioglu ORCID logo , Mehmet Gumustas ORCID logo , Ilhami Gulcin ORCID logo , Cavit Kazaz ORCID logo and Ahmet Cakir ORCID logo
Published/Copyright: June 29, 2020
Become an author with De Gruyter Brill

Abstract

The aim of this study was to investigate the effects of extracts and pure Artemisia dracunculus L. (tarragon) metabolites on the antimonoamine oxidase and anticholinesterase activities. The compounds were characterized as stigmasterol (1), herniarin (2), (2E,4E)-1-(piperidin-1-yl)undeca-2,4-diene-8,10-diyn-1-one (3), (2E,4E)-N-isobutylundeca-2,4-dien-8,10-diynamide (4), 3,4-dehydroherniarin (5) and skimmin (6) by 1H-NMR, 13C-NMR, 1D and 2D NMR methods. The compounds 5 and 6 were isolated from tarragon for the first time. The extracts and pure compounds have inhibitory effects on the human monoamine oxidase (hMAO) A and B enzymes, whereas they did not exhibit any anticholinesterase activities. Among the tarragon compounds, only 2 and 6 compounds showed the inhibitory effects against hMAO A (IC50 = 51.76 and 73.47 μM, respectively) and hMAO B (IC50 = 0.84 and 1.63 mM, respectively). In the study, herniarin content in the extracts was also analysed by high-performance liquid chromatography and it was found that there was a relationship between the inhibition effects of the extracts and their herniarin content.


Corresponding author: Tuba Aydin, Department of Pharmacognosy, Faculty of Pharmacy, Agri Ibrahim Cecen University, Agri04100, Turkey,

Funding source: Ağrı İbrahim Çeçen University Research Fund

Award Identifier / Grant number: BAP: ECZF.18.002BAP: FEF.18.003

Acknowledgments

This study was supported by grants of Ağrı İbrahim Çeçen University Research Fund (BAP: ECZF.18.002 and BAP: FEF.18.003).

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

References

1. Obolskiy, D, Pischel, I, Feistel, B, Glotov, N, Heinrich, M. Artemisia dracunculus L. (tarragon): A critical review of its traditional use, chemical composition, pharmacology, and safety. J Agr Food C 2011;59:11367–84. https://doi.org/10.1021/jf202277w.Search in Google Scholar PubMed

2. Karimi, A, Hadian, J, Farzaneh, M, Khadivi-Khub, A. Phenotypic diversity and volatile composition of Iranian Artemisia dracunculus. Ind Crop Prod 2015;65:315–23. https://doi.org/10.1016/j.indcrop.2014.12.003.Search in Google Scholar

3. Miraldi, E, Ferri, S, Mostaghimi, V. Botanical drugs and preparations in the traditional medicine of west Azerbaijan (Iran). J Ethnopharmacol 2001;75:77–87. https://doi.org/10.1016/s0378-8741(00)00381-0.Search in Google Scholar PubMed

4. Bang, NC, Abyshev, AZ, Ivkin, DY. Synthesis and in vivo evaluation of new coumarin conjugates as potential indirect-action anticoagulants. Pharm Chem J 2019;53:419–22. https://doi.org/10.1007/s11094-019-02013-z.Search in Google Scholar

5. Karatas, MO, Tekin, S, Alici, B, Sandal, S. Cytotoxic effects of coumarin substituted benzimidazolium salts against human prostate and ovarian cancer cells. J Chem Sci 2019;131:8. https://doi.org/10.1007/s12039-019-1647-0.Search in Google Scholar

6. Sowa, P, Tarapatskyy, M, Puchalski, C, Jarecki, W, Dzugan, M. A novel honey-based product enriched with coumarin from melilotus flowers. J Food Meas Charact 2019;13:1748–54. https://doi.org/10.1007/s11694-019-00092-w.Search in Google Scholar

7. Ruiz-Marcial, C, Chilpa, RR, Estrada, E, Reyes-Esparza, J, Farina, GG, Rodriguez-Fragoso, L. Anti proliferative, cytotoxic and antitumour activity of coumarins isolated from Calophyllum brasiliense. J Pharm Pharmacol 2007;59:719–25. https://doi.org/10.1211/jpp.59.5.0013.Search in Google Scholar PubMed

8. Attia, G, Abou-El-Seoud, KA, Ibrahim, AS. Biotransformation of coumarins by Cunninghamella elegans. Afr J Pharm Pharmacol 2015;10:411–8, https://doi.org/10.5897/AJPP2015.4419.Search in Google Scholar

9. Obistioiu, D, Cristina, RT, Schmerold, I, Chizzola, R, Stolze, K, Nichita, I, Chiurciu, V. Chemical characterization by gc-ms and in vitro activity against candida albicans of volatile fractions prepared from Artemisia dracunculus, Artemisia abrotanum, Artemisia absinthium and Artemisia vulgaris. Chem Cent J 2014;8:1–11. https://doi.org/10.1186/1752-153x-8-6.Search in Google Scholar

10. Tipton, KF. Enzymology of monoamine-oxidase. Cell Biochem Funct 1986;4:79–87. https://doi.org/10.1002/cbf.290040202.Search in Google Scholar PubMed

11. Vina, D, Serra, S, Lamela, M, Delogu, G. Herbal natural products as a source of monoamine oxidase inhibitors: A review. Curr Top Med Chem 2012;12:2131–44. https://doi.org/10.2174/156802612805219996.Search in Google Scholar PubMed

12. Weyler, W, Hsu, YPP, Breakefield, XO. Biochemistry and genetics of monoamine-oxidase. Pharmacol Therapeut 1990;47:391–417. https://doi.org/10.1016/0163-7258(90)90064-9.Search in Google Scholar PubMed

13. Vindis, C, Seguelas, MH, Bianchi, P, Parini, A, Cambon, C. Monoamine oxidase b induces erk-dependent cell mitogenesis by hydrogen peroxide generation. Biochem Bioph Res Co 2000;271:181–85. https://doi.org/10.1006/bbrc.2000.2524.Search in Google Scholar PubMed

14. Cherrington, B, Englich, U, Niruntari, S, Grant, W, Hodgman, M. Monoamine oxidase a inhibition by toxic concentrations of metaxalone. Clin Toxicol 2019;2019:1–5. https://doi.org/10.1080/15563650.2019.1648815.Search in Google Scholar PubMed

15. Bortolato, M, Floris, G, Shih, JC. From aggression to autism: New perspectives on the behavioral sequelae of monoamine oxidase deficiency. J Neural Transm 2018;125:1589–99. https://doi.org/10.1007/s00702-018-1888-y.Search in Google Scholar PubMed PubMed Central

16. Erdemir, P, Celepci, DB, Aktas, A, Gok, Y, Kaya, R, Taslimi, P, Demir, Y, Gulcin, I. Novel 2-aminopyridine liganded pd(ii) n-heterocyclic carbene complexes: Synthesis, characterization, crystal structure and bioactivity properties. Bioorg Chem 2019;91:1–11. https://doi.org/10.1016/j.bioorg.2019.103134.Search in Google Scholar PubMed

17. Rawa, MSA, Hassan, Z, Murugaiyah, V, Nogawa, T, Wahab, HA. Anti-cholinesterase potential of diverse botanical families from Malaysia: Evaluation of crude extracts and fractions from liquid-liquid extraction and acid-base fractionation. J Ethnopharmacol 2019;245. https://doi.org/10.1016/j.jep.2019.112160.Search in Google Scholar PubMed

18. Al-Sayed, NAE, Farag, AES, Ezzat, MAF, Akincioglu, H, Gulc'in, İ, Abou-Seri, SM. Design, synthesis, in vitro and in vivo evaluation of novel pyrrolizine-basedcompounds with potential activity as cholinesterase inhibitors and anti-Alzheimer’s agents. Bioorg Chem 2019;93:103312, https://doi.org/10.1016/j.bioorg.2019.103312.Search in Google Scholar PubMed

19. Genc Bilgicli, H, Kestane, A, Taslimi, P, Karabay, O, Bytyqi-Damoni, A, Zengin, M, Gulc'in, İ. Novel eugenol bearing oxypropanolamines: Synthesis, characterization, antibacterial, antidiabetic, and anticholinergic potentials. Bioorg Chem 2019;88:102931. https://doi.org/10.1016/j.bioorg.2019.102931.Search in Google Scholar PubMed

20. Sharma, K. Cholinesterase inhibitors as alzheimer’s therapeutics. Mol Med Rep 2019;20:1479–87, https://doi.org/10.3892/mmr.2019.10374.Search in Google Scholar PubMed PubMed Central

21. Silman, I, Sussman, JL. Acetylcholinesterase: ’Classical’ and ’non-classical’ functions and pharmacology. Curr Opin Pharmacol 2005;5:293–302. https://doi.org/10.1016/j.coph.2005.01.014.Search in Google Scholar PubMed

22. Bartus, RT, Dean, RL, Beer, B, Lippa, AS. The cholinergic hypothesis of geriatric memory dysfunction. Sci 1982;217:408–17. https://doi.org/10.1126/science.7046051.Search in Google Scholar PubMed

23. Jayaprakash, V, Yabanoglu, S, Sinha, BN, Ucar, G. Pyrazoline-based mycobactin analogues as dual inhibitors of MAO/cholinesterase. Turk J Biochem 2010;35:89–96, https://doi.org/10.1016/j.bmcl.2008.10.084.Search in Google Scholar PubMed

24. Jayaprakash, V, Sinha, BN, Ucar, G, Ercan, A. Pyrazoline-based mycobactin analogues as MAO-inhibitors. Bioorg Med Chem Lett 2008;18:6362–68. https://doi.org/10.1016/j.bmcl.2008.10.084.Search in Google Scholar

25. Cavalli, A, Bolognesi, ML, Minarini, A, Rosini, M, Tumiatti, V, Recanatini, M, Melchiorre, C. Multi-target-directed ligands to combat neurodegenerative diseases. J Med Chem 2008;51:347–72. https://doi.org/10.1021/jm7009364.Search in Google Scholar PubMed

26. Aydin, T, Yurtvermez, B, Senturk, M, Kazaz, C, Cakir, A. Inhibitory effects of metabolites isolated from Artemisia dracunculus L. against the human carbonic anhydrase I (hCA I) and II (hCA II). Rec Nat Prod 2019;13:216–25, http://doi.org/10.25135/rnp.102.18.07.329.10.25135/rnp.102.18.07.329Search in Google Scholar

27. Guvenalp, Z, Ozbek, H, Dursunoglu, B, Yuca, H, Gozcu, S, Cil, YM, Kazaz, C, Kara, K, Demirezer, OL. Alpha-amylase and alpha-glucosidase inhibitory activities of the herbs of Artemisia dracunculus L. and its active constituents. Med Chem Res 2017;26:3209–15. https://doi.org/10.1007/s00044-017-2014-7.Search in Google Scholar

28. Gunes, A, Kordali, S, Turan, M, Bozhuyuk, AU. Determination of antioxidant enzyme activity and phenolic contents of some species of the Asteraceae family from medicanal plants. Ind Crop Prod 2019;137:208–13, https://doi.org/10.1016/j.indcrop.2019.05.042.Search in Google Scholar

29. Mumivand, H, Babalar, M, Tabrizi, L, Craker, LE, Shokrpour, M, Hadian, J. Antioxidant properties and principal phenolic phytochemicals of iranian tarragon (Artemisia dracunculus L.) accessions. Hortic Environ Biote 2017;58:414–22. https://doi.org/10.1007/s13580-017-0121-5.Search in Google Scholar

30. Wang, J, Fernandez, AE, Tiano, S, Huang, J, Floyd, E, Poulev, A, Ribnicky, D, Pasinetti, GM. An extract of Artemisia dracunculus L. Promotes psychological resilience in a mouse model of depression. Oxid Med Cell Longev 2018. https://doi.org/10.1155/2018/7418681.Search in Google Scholar PubMed PubMed Central

31. Chaleshtori, RS, Taghizadeh, M, Arani, NM, Sharafati Chaleshtori, F. A comparative study on the antibacterial activity of Artemisia dracunculus L. and Ocimum basilicum essential oils on multidrug resistant bacteria isolated from ready to eat foods. J Essent Oil Bear Pl 2018;21:701–12, https://doi.org/10.1080/0972060X.2018.1491328.Search in Google Scholar

32. Liu, TM, Lin, PC, Bao, TW, Ding, Y, Lha, Q, Nan, P, Huang, YY, Gu, ZY, Zhong, Y. Essential oil composition and antimicrobial activity of Artemisia dracunculus L. var. Qinghaiensis y. R. Ling (Asteraceae) from qinghai-tibet plateau. Ind Crop Prod 2018;125:1–4. https://doi.org/10.1016/j.indcrop.2018.08.085.Search in Google Scholar

33. Watcho, P, Stavniichuk, R, Tane, P, Shevalye, H, Maksimchyk, Y, Pacher, P, Obrosova, IG. Evaluation of pmi-5011, an ethanolic extract of Artemisia dracunculus L., on peripheral neuropathy in streptozotocin-diabetic mice. Int J Mol Med 2011;27:299–307, https://doi.org/10.3892/ijmm.2011.597.Search in Google Scholar PubMed PubMed Central

34. Vandanmagsar, B, Haynie, KR, Wicks, SE, Bermudez, EM, Mendoza, TM, Ribnicky, D, Cefalu, WT, Mynatt, RL. Artemisia dracunculus L. extract ameliorates insulin sensitivity by attenuating inflammatory signalling in human skeletal muscle culture. Diabetes Obes Metab 2014;16:728–38. https://doi.org/10.1111/dom.12274.Search in Google Scholar PubMed PubMed Central

35. Stafford, GI, Pedersen, PD, Jager, AK, Van Staden, J. Monoamine oxidase inhibition by southern African traditional medicinal plants. S Afr J Bot 2007;73:384–90. https://doi.org/10.1016/j.sajb.2007.03.001.Search in Google Scholar

36. Holt, A, Sharman, DF, Baker, GB, Palcic, MM. A continuous spectrophotometric assay for monoamine oxidase and related enzymes in tissue homogenates. Anal Biochem 1997;244:384–92. https://doi.org/10.1006/abio.1996.9911.Search in Google Scholar PubMed

37. Ellman, GL, Courtney, KD, Andres, V, Featherston, RM. A new and rapidcolorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961;7:88–95. https://doi.org/10.1016/0006-2952(61)90145-9.Search in Google Scholar PubMed

38. Oztaskin, N, Kaya, R, Maraş, A, Sahin, E, Gülçin, İ, Göksu, S. Synthesis and characterization of novel bromophenols: Determination of their anticholinergic, antidiabetic and antioxidant activities. Bioorg Chem 2019;87:91–102, https://doi.org/10.1016/j.bioorg.2019.03.010.Search in Google Scholar PubMed

39. Talbi, M, Saadali, B, Boriky, D, Bennani, L, Elkouali, M, Ainane, T. Two natural compounds - a benzofuran and a phenylpropane - from Artemisia dracunculus. J Asian Nat Prod Res 2016;18:724–29. https://doi.org/10.1080/10286020.2016.1158708.Search in Google Scholar PubMed

40. Saadali, B, Boriky, D, Blaghen, M, Vanhaelen, M, Talbi, M. Alkamides from Artemisia dracunculus. Phytochemistry 2001;58:1083–86. https://doi.org/10.1016/s0031-9422(01)00347-8.Search in Google Scholar PubMed

41. Yamada, M, Nakamura, K, Watabe, T, Ohno, O, Kawagoshi, M, Maru, N, Uotsu, N, Chiba, T, Yamaguchi, K, Uemura, D. Melanin biosynthesis inhibitors from tarragon Artemisia dracunculus. Biosci Biotech Bioch 2011;75:1628–30. https://doi.org/10.1271/bbb.110306.Search in Google Scholar PubMed

42. Meepagala, KM, Sturtz, G, Wise, D, Wedge, DE. Molluscicidal and antifungal activity of erigeron speciosus steam distillate. Pest Manag Sci 2002;58:1043–47. https://doi.org/10.1002/ps.542.Search in Google Scholar PubMed

43. Aglarova, AM, Zilfikarov, IN, Severtseva, OV. Biological characteristics and useful properties of tarragon (Artemisia dracunculus L.) (review). Pharm Chem J 2008;42:81–86. https://doi.org/10.1007/s11094-008-0064-3.Search in Google Scholar

44. Ribnicky, DM, Poulev, A, Watford, M, Cefalu, WT, Raskin, I. Antihyperglycemic activity of tarralin (tm), an ethanolic extract of Artemisia dracunculus L. Phytomedicine 2006;13:550–57. https://doi.org/10.1016/j.phymed.2005.09.007.Search in Google Scholar PubMed

45. Ribnicky, DM, Kuhn, P, Poulev, A, Logendra, S, Zuberi, A, Cefalu, WT, Raskin, I. Improved absorption and bioactivity of active compounds from an anti-diabetic extract of Artemisia dracunculus L. Int J Pharmaceut 2009;370:87–92. https://doi.org/10.1016/j.ijpharm.2008.11.012.Search in Google Scholar PubMed PubMed Central

46. Wang, ZQ, Ribnicky, D, Zhang, XH, Raskin, I, Yu, YM, Cefalu, WT. Bioactives of Artemisia dracunculus L. enhance cellular insulin signaling in primary human skeletal muscle culture. Metabolism 2008;57:S58–S64. https://doi.org/10.1016/j.metabol.2008.04.003.Search in Google Scholar PubMed PubMed Central

47. Benli, M, Kaya, I, Yigit, N. Screening antimicrobial activity of various extracts of Artemisia dracunculus L. Cell Biochem Funct 2007;25:681–86. https://doi.org/10.1002/cbf.1373.Search in Google Scholar PubMed

48. Shahriyary, L, Yazdanparast, R. Inhibition of blood platelet adhesion, aggregation and secretion by Artemisia dracunculus leaves extracts. J Ethnopharmacol 2007;114:194–98. https://doi.org/10.1016/j.jep.2007.07.029.Search in Google Scholar PubMed

49. Sayyah, M, Nadjafnia, L, Kamalinejad, M. Anticonvulsant activity and chemical composition of Artemisia dracunculus L. essential oil. J Ethnopharmacol 2004;94:283–87. https://doi.org/10.1016/j.jep.2004.05.021.Search in Google Scholar PubMed

50. Mattsson, C, Svensson, P, Sonesson, C. A novel series of 6-substituted 3-(pyrrolidin-1-ylmethyl)chromen-2-ones as selective monoamine oxidase (MAO) a inhibitors. Eur J Med Chem 2014;73:177–86. https://doi.org/10.1016/j.ejmech.2013.11.035.Search in Google Scholar PubMed

51. Gnerre, C, Catto, M, Leonetti, F, Weber, P, Carrupt, PA, Altomare, C, Carotti, A, Testa, B. Inhibition of monoamine oxidases by functionalized coumarin derivatives: Biological activities, qsars, and 3d-qsars. J Med Chem 2000;43:4747–58. https://doi.org/10.1021/jm001028o.Search in Google Scholar PubMed

52. Seong, SH, Ali, MY, Jung, HA, Choi, JS. Umbelliferone derivatives exert neuroprotective effects by inhibiting monoamine oxidase a, self-amyloid beta aggregation, and lipid peroxidation. Bioorg Chem 2019;92. https://doi.org/10.1016/j.bioorg.2019.103293.Search in Google Scholar PubMed

53. Ibrar, A, Shehzadi, SA, Saeed, F, Khan, I. Developing hybrid molecule therapeutics for diverse enzyme inhibitory action: Active role of coumarin-based structural leads in drug discovery. Bioorgan Med Chem 2018;26:3731–62. https://doi.org/10.1016/j.bmc.2018.05.042.Search in Google Scholar PubMed

Received: 2019-12-15
Revised: 2020-05-18
Accepted: 2020-05-25
Published Online: 2020-06-29
Published in Print: 2020-11-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Research articles
  3. Modulation of antibiotic resistance by the essential oil of Ocimum gratissimum L. in association with light-emitting diodes (LED) lights
  4. Dynamic analysis of the mathematical model of COVID-19 with demographic effects
  5. Biochemical evidences for M1-, M17- and M18-like aminopeptidases in marine invertebrates from Cuban coastline
  6. Hexanal inhalation affects cognition and anxiety-like behavior in mice
  7. Overexpression of a novel E3 ubiquitin ligase gene from Coptis chinensis Franch enhances drought tolerance in transgenic tobacco
  8. Topiroxostat ameliorates oxidative stress and inflammation in sepsis-induced lung injury
  9. A computational study of the interactions between anthocyans and cyclodextrins
  10. Chemical characterization of the lipids in femoral gland secretions of wild male tegu lizards, Salvator merianae (Squamata, Teiidae) in comparison with captive-bred males
  11. Metabolite profiling by means of GC-MS combined with principal component analyses of natural populations of Nectaroscordum siculum ssp. bulgaricum (Janka) Stearn
  12. human monoamine oxidase (hMAO) A and hMAO B inhibitors from Artemisia dracunculus L. herniarin and skimmin: human mononamine oxidase A and B inhibitors from A. dracunculus L.
  13. Rapid communications
  14. Chemical composition and anticholinesterase inhibitory activity of Pavetta graciliflora Wall. ex Ridl. essential oil
  15. Chemical composition of the essential oils of four Polyalthia species from Malaysia
  16. Composition of the essential oils of three Malaysian Xylopia species (Annonaceae)
  17. Chemical characterization of Goniothalamus macrophyllus and Goniothalamus malayanus leaves’ essential oils
  18. Effect of pH on xylitol production by Candida species from a prairie cordgrass hydrolysate
Downloaded on 27.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znc-2019-0227/html
Scroll to top button