Abstract
Endothelial cell dysfunction is considered a major cause of vascular complications in diabetes. In the present study, we investigated the protective effect of daidzein, a natural isoflavonoid, against high-glucose–induced oxidative damage in human umbilical vein endothelial cells (HUVECs). Treatment with a high concentration of glucose (30 mM) induced oxidative stress in the endothelial cells, against which daidzein protected the cells as demonstrated by significantly increased cell viability. In addition, lipid peroxidation, intracellular reactive oxygen species (ROS) generation, and indirect nitric oxide levels induced by the high glucose treatment were significantly reduced in the presence of daidzein (0.02–0.1 mM) in a dose-dependent manner. High glucose levels induced the overexpression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and NF-κB proteins in HUVECs, which was suppressed by treatment with 0.04 mM daidzein. These findings indicate the potential of daidzein to reduce high glucose-induced oxidative stress.
References
1. Halliwell B, Gutteridge JM. Free radicals in biology and medicine, 3rd ed. Oxford: Clarendon Press, 2002.Suche in Google Scholar
2. Yokozawa T, Kim YA, Kim HY, Okamoto T, Sei Y. Protective effect of the Chinese prescription kangen-karyu against high-glucose-induced oxidative stress in LLC-PK1 cells. J Ethnopharmacol 2007;109:113–20.10.1016/j.jep.2006.07.020Suche in Google Scholar PubMed
3. Hiramatsu K, Arimori S. Increased superoxide production by mononuclear cells of patients with hypertriglyceridemia and diabetes. Diabetes 1988;37:832–7.10.2337/diab.37.6.832Suche in Google Scholar PubMed
4. Hunt JV, Smith CC, Wolf SP. Autoxidative glycosylation and possible involvement of peroxides and free radicals in LDL modification by glucose. Diabetes 1990;39:1420–4.10.2337/diab.39.11.1420Suche in Google Scholar PubMed
5. Brownlee M. Lilly Lecture 1993: glycation and diabetic complications. Diabetes 1994;43:836–41.10.2337/diab.43.6.836Suche in Google Scholar PubMed
6. Maritim AC, Sanders RA, Watkins JB 3rd. Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol 2003;17:24–38.10.1002/jbt.10058Suche in Google Scholar PubMed
7. Kaneto H, Nakatani Y, Kawamori D, Miyatsuka T, Matsuoka TA, Matsuhisa M, et al. Role of oxidative stress, endoplasmic reticulum stress, and c-Jun N-terminal kinase in pancreatic beta-cell dysfunction and insulin resistance. Int J Biochem Cell Biol 2006;38:782–93.10.1016/j.biocel.2006.01.004Suche in Google Scholar PubMed
8. Uemura S, Matsushita H, Li W, Glassford AJ, Asagami T, Lee KH, et al. Diabetes mellitus enhances vascular matrix metalloproteinase activity: role of oxidative stress. Circ Res 2001;88:1291–8.10.1161/hh1201.092042Suche in Google Scholar PubMed
9. Yokozawa T, Kim YA, Kim HY, Lee YA, Nonaka G. Protective effect of persimmon peel polyphenol against high glucose-induced oxidative stress in LLC-PK(1) cells. Food Chem Toxicol 2007;45:1979–87.10.1016/j.fct.2007.04.018Suche in Google Scholar PubMed
10. Cos P, De Bruyne T, Apers S, Vanden Berghe D, Pieters L, Vlietinck AJ. Phytoestrogens: recent developments. Planta Med 2003;69:589–99.10.1055/s-2003-41122Suche in Google Scholar PubMed
11. Jiang RW, Lau KM, Lam HM, Yam WS, Leung LK, Choi KL, et al. A comparative study on aqueous root extracts of Pueraria thomsonii and Pueraria lobata by antioxidant assay and HPLC fingerprint analysis. J Ethnopharmacol 2005;96:133–8.10.1016/j.jep.2004.08.029Suche in Google Scholar PubMed
12. Zhu QY, Huang Y, Tsang D, Chen ZY. Regeneration of alpha-tocopherol in human low-density lipoprotein by green tea catechin. J Agric Food Chem 1999;47:2020–5.10.1021/jf9809941Suche in Google Scholar
13. Liggins J, Bluck LJ, Runswick S, Atkinson C, Coward WA, Bingham SA. Daidzein and genistein content of fruits and nuts. J Nutr Biochem 2000;11:326–31.10.1016/S0955-2863(00)00085-1Suche in Google Scholar
14. Rice-Evans CA, Miller NJ, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 1996;20:933–56.10.1016/0891-5849(95)02227-9Suche in Google Scholar
15. Arora A, Nair MG, Strasburg GM. Antioxidant activities of isoflavones and their biological metabolites in a liposomal system. Arch Biochem Biophys 1998;356:133–41.10.1006/abbi.1998.0783Suche in Google Scholar
16. Gercel-Taylor C, Feitelson AK, Taylor DD. Inhibitory effect of genistein and daidzein on ovarian cancer cell growth. Anticancer Res 2004;24:795–800.Suche in Google Scholar
17. Fautz R, Husein B, Hechenberger C. Application of the neutral red assay (NR assay) to monolayer cultures of primary hepatocytes: rapid colorimetric viability determination for the unscheduled DNA synthesis test (UDS). Mutat Res 1991;253:173–9.10.1016/0165-1161(91)90130-ZSuche in Google Scholar
18. Fraga CG, Leibovita RM, Roeder RG. Lipid peroxidation measured as hiobarbituric-reactive substances in tissue slices: characterization and comparison with homogenates and microsomes. Free Radic Biol Med 1988;4:155–61.10.1016/0891-5849(88)90023-8Suche in Google Scholar
19. Wang H, Joseph JA. Quantifying cellular oxidative stress by dichlorofluorescin assay using microplate reader. Free Radic Biol Med 1999;27:612–6.10.1016/S0891-5849(99)00107-0Suche in Google Scholar
20. Nath J, Powledge A. Modulation of human neutrophil inflammatory responses by nitric oxide: studies in unprimed and LPS-primed cells. J Leukoc Biol 1997;62:805–16.10.1002/jlb.62.6.805Suche in Google Scholar
21. Marklund S, Marklund G. Involvement of the superoxide anion radical in antioxidant of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 1974;47:469–74.10.1111/j.1432-1033.1974.tb03714.xSuche in Google Scholar
22. Aebi H. Catalase in vitro. Methods Enzymol 1984;105:121–6.10.1016/S0076-6879(84)05016-3Suche in Google Scholar
23. Lawrence RA, Burk RF. Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Commun 1976;71:952–8.10.1016/0006-291X(76)90747-6Suche in Google Scholar
24. Yamabe N, Kang KS, Goto E, Tanaka T, Yokozawa T. Beneficial effect of corni fructus, a constituent of Hachimi-jio-gan, on advanced glycation end product mediated renal injury in streptozotocin-treated diabetic rats. Biol Pharm Bull 2007;30:520–6.10.1248/bpb.30.520Suche in Google Scholar
25. Ravindra PS, Shashwat S, Suman K. Free radicals and oxidative stress in neurodegenerative diseases: relevance of dietary antioxidants. JIACM 2004;5:218–25.Suche in Google Scholar
26. Osakabe N, Yamagishi M, Natsume M, Yasuda A, Osawa T. Ingestion of proanthocyanidins derived from cacao inhibits diabetes-induced cataract formation in rats. Exp Biol Med 2004;229:33–9.10.1177/153537020422900104Suche in Google Scholar
27. Cosentino F, Lüscher TF. Endothelial dysfunction in diabetes mellitus. J Cardiovasc Pharmacol 1998;32:54–61.Suche in Google Scholar
28. Cotelle N, Bernier JL, Hénichart JP, Catteau JP, Gaydou E, Wallet JC. Scavenger and antioxidant properties of ten synthetic flavones. Free Radic Biol Med 1992;13:211–9.10.1016/0891-5849(92)90017-BSuche in Google Scholar
29. Hanasaki Y, Ogawa S, Fukui S. The correlation between active oxygens scavenging and antioxidative effects of flavonoids. Free Radic Biol Med 1994;16:845–50.10.1016/0891-5849(94)90202-XSuche in Google Scholar
30. Liggins J, Mulligan A, Runswick S, Bingham SA. Daidzein and genistein content of cereals. Eur J Clin Nutr 2002;56:961–6.10.1038/sj.ejcn.1601419Suche in Google Scholar PubMed
31. Foti P, Erba D, Riso P, Spadafranca A, Criscuoli F, Testolin G. Comparison between daidzein and genistein antioxidant activity in primary and cancer lymphocytes. Arch Biochem Biophys 2005;433:421–7.10.1016/j.abb.2004.10.008Suche in Google Scholar PubMed
32. Setchell KD, Cassidy A. Dietary isoflavones: biological effects and relevance to human health. J Nutr 1999;129:758S–67S.10.1093/jn/129.3.758SSuche in Google Scholar PubMed
33. Reusch JE. Diabetes, microvascular complications, and cardiovascular complications: what is it about glucose? J Clin Invest 2003;112:986–8.10.1172/JCI200319902Suche in Google Scholar
34. Giugliano D, Ceriello A, Paolisso G. Oxidative stress and diabetic vascular complications. Diabetes Care 1996;19:257–67.10.2337/diacare.19.3.257Suche in Google Scholar PubMed
35. Liang J, Tian YX, Fu LM, Wang TH, Li HJ, Wang P, et al. Daidzein as an antioxidant of lipid: effects of the microenvironment in relation to chemical structure. J Agric Food Chem 2008;56:10376–83.10.1021/jf801907mSuche in Google Scholar
36. Sim GS, Lee BC, Cho HS, Lee JW, Kim DH, Kim JH, et al. Structure activity relationship of antioxidative property of flavonoids and inhibitory effect on matrix metalloproteinase activity in UVA-irradiated human dermal fibroblast. Arch Pharm Res 2007;30:290–8.10.1007/BF02977608Suche in Google Scholar
37. Gutteridge JM, Halliwell B. The measurement and mechanism of lipid peroxidation in biological systems. Trends Biochem Sci 1990;15:129–35.10.1016/0968-0004(90)90206-QSuche in Google Scholar
38. Seghrouchni I, Drai J, Bannier E, Rivière J, Calmard P, Garcia I, et al. Oxidative stress parameters in type I, type II and insulin-treated type 2 diabetes mellitus; insulin treatment efficiency. Clin Chim Acta 2002;321:89–96.10.1016/S0009-8981(02)00099-2Suche in Google Scholar
39. Toda S, Shirataki Y. Inhibitory effects of isoflavones on lipid peroxidation by reactive oxygen species. Phytother Res 1999;13:163–5.10.1002/(SICI)1099-1573(199903)13:2<163::AID-PTR405>3.0.CO;2-#Suche in Google Scholar
40. Corbett JA, McDaniel ML. Dose nitric oxide mediate autoimmune destruction on beta-cells? Possible therapeutic interventions in IDDM. Diabetes 1992;41:897–903.10.2337/diab.41.8.897Suche in Google Scholar
41. Radi R, Beckman JS, Bush KM, Freeman BA. Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch Biochem Biophys 1991;288:481–7.10.1016/0003-9861(91)90224-7Suche in Google Scholar
42. Jin SE, Son YK, Min BS, Jung HA, Choi JS. Anti-inflammatory and antioxidant activities of constituents isolated from Pueraria lobata roots. Arch Pharm Res 2012;35:823–37.10.1007/s12272-012-0508-xSuche in Google Scholar
43. Singh RP, Sharad S, Kapur S. Free radicals and oxidative stress in neurodegenerative diseases: relevance of dietary antioxidants. JIACM 2004;5:218–25.Suche in Google Scholar
44. Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes 1991;40:405–12.10.2337/diab.40.4.405Suche in Google Scholar
45. Husain K, Somani SM. Interaction of exercise training and chronic ethanol ingestion on testicular antioxidant system in rat. J Appl Toxicol 1998;18:421–9.10.1002/(SICI)1099-1263(199811/12)18:6<421::AID-JAT532>3.0.CO;2-RSuche in Google Scholar
46. Benhamou PY, Moriscot C, Richard MJ, Beatrix O, Badet L, Pattou F, et al. Adenovirus-mediated catalase gene transfer reduces oxidant stress in human, porcine and rat pancreatic islets. Diabetologia 1998;41:1093–100.10.1007/s001250051035Suche in Google Scholar
47. Kim JA, Kong CS, Kim SK. Effect of Sargassum thunbergii on ROS mediated oxidative damage and identification of polyunsaturated fatty acid components. Food Chem Toxicol 2010;48:1243–9.10.1016/j.fct.2010.02.017Suche in Google Scholar
48. Ullmann K, Wiencierz AM, Müller C, Thierbach R, Steege A, Toyokuni S, et al. A high-throughput reporter gene assay to prove the ability of natural compounds to modulate glutathione peroxidase, superoxide dismutase and catalase gene promoters in V79 cells. Free Radic Res 2008;42:746–53.10.1080/10715760802337273Suche in Google Scholar
49. Lee YA, Kim YJ, Cho EJ, Yokozawa T. Ameliorative effects of proanthocyanidin on oxidative stress and inflammation in streptozotocin-induced diabetic rats. J Agric Food Chem 2007;55:9395–400.10.1021/jf071523uSuche in Google Scholar
50. Aso Y. Cardiovascular disease in patients with diabetic nephropathy. Curr Mol Med 2008;8:533–43.10.2174/156652408785747960Suche in Google Scholar
51. Wu KK. Inducible cyclooxygenase and nitric oxide synthase. Adv Pharmacol 1995;33:179–207.10.1016/S1054-3589(08)60669-9Suche in Google Scholar
52. Spencer NF, Poynter ME, Im SY, Daynes RA. Constitutive activation of NF-kappa B in an animal model of aging. Int Immunol 1997;9:1581–8.10.1093/intimm/9.10.1581Suche in Google Scholar PubMed
53. Kim JY, Park SJ, Yun KJ, Cho YW, Park HJ, Lee KT. Isoliquiritigenin isolated from the roots of Glycyrrhizauralensis inhibits LPS-induced iNOS and COX-2 expression via the attenuation of NF-κB in RAW 264.7 macrophages. Eur J Pharmacol 2008;584:175–84.10.1016/j.ejphar.2008.01.032Suche in Google Scholar PubMed
54. Mari H, Riina N, Pia V, Marina H, Eeva M. Anti-inflammatory effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-κB activations, whereas flavone, isorhamnetin, Naringenin, and pelargonidin inhibit only NF-κB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages. Mediators Inflamm 2007;2007:45673.10.1155/2007/45673Suche in Google Scholar
55. Morigi M, Angioletti S, Imberti B, Donadelli R, Micheletti G, Figliuzzi M, et al. Leukocyte-endothelial interaction is augmented by high glucose concentrations and hyperglycemia in a NF-κB-dependent fashion. J Clin Invest 1998;101:1905–15.10.1172/JCI656Suche in Google Scholar PubMed PubMed Central
©2016 by De Gruyter
Artikel in diesem Heft
- Frontmatter
- Synergistic inhibitory effect of scopoletin and bisdemethoxycurcumin on Tetranychus cinnabarinus (Boisduval) (Acari: Tetranychidae)
- Alkaloid profiles and acetylcholinesterase inhibitory activities of Fumaria species from Bulgaria
- Unguisin F, a new cyclic peptide from the endophytic fungus Mucor irregularis
- The protective effect of daidzein on high glucose-induced oxidative stress in human umbilical vein endothelial cells
- Antiproliferative effects of triterpenoidal derivatives, obtained from the marine sponge Siphonochalina sp., on human hepatic and colorectal cancer cells
- Obituary
- Professor Peter Böger (23.03.1935 – 22.10.2015)
Artikel in diesem Heft
- Frontmatter
- Synergistic inhibitory effect of scopoletin and bisdemethoxycurcumin on Tetranychus cinnabarinus (Boisduval) (Acari: Tetranychidae)
- Alkaloid profiles and acetylcholinesterase inhibitory activities of Fumaria species from Bulgaria
- Unguisin F, a new cyclic peptide from the endophytic fungus Mucor irregularis
- The protective effect of daidzein on high glucose-induced oxidative stress in human umbilical vein endothelial cells
- Antiproliferative effects of triterpenoidal derivatives, obtained from the marine sponge Siphonochalina sp., on human hepatic and colorectal cancer cells
- Obituary
- Professor Peter Böger (23.03.1935 – 22.10.2015)