Home Physical Sciences 113Cd NMR-spectroscopic characterization of Y2Cu2Cd and Y2Pd2Cd
Article
Licensed
Unlicensed Requires Authentication

113Cd NMR-spectroscopic characterization of Y2Cu2Cd and Y2Pd2Cd

  • Michael Johnscher , Christopher Benndorf , Theresa Block , Hellmut Eckert EMAIL logo and Rainer Pöttgen EMAIL logo
Published/Copyright: September 23, 2025
Become an author with De Gruyter Brill

Abstract

Samples of YPdCd, Y2Pd2Cd and Y2Cu2Cd were synthesized from the elements by induction melting. The three cadmium phases were characterized through their Guinier powder patterns. YPdCd crystallizes with the hexagonal ZrNiAl-type structure (space group P 6 2m; a = 756.0(4) and c = 384.7(2) pm). The structure of Y2Pd2Cd was refined from single-crystal X-ray diffractometer data: Mo2B2Fe type, tetragonal space group P4/mbm, a = 765.33(3), c = 370.30(2) pm, wR2 = 0.0254, 289 F2 values and 12 variables. Y2Pd2Cd is a 1:1 intergrowth structure of CsCl and AlB2 related slabs of compositions ‘YCd’ and ‘YPd2’. The palladium dumb-bells (279 pm Pd–Pd) and the cadmium atoms (301 pm Cd–Pd) form a two-dimensional [Pd2Cd] substructure that is separated by yttrium layers in c direction. Consistent with their crystal structures, the 113Cd solid-state MAS-NMR spectra of Y2Pd2Cd and isotypic Y2Cu2Cd show only one signal characterized by strong Knight shift contributions.


Corresponding authors: Hellmut Eckert, Institut für Physikalische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany; and Institute of Physics in São Carlos, University of São Paulo, São Carlos, SP, 13566-590, Brazil, E-mail: ; and Rainer Pöttgen, Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany, E-mail:

Acknowledgements

We thank Dipl.-Ing. U. C. Rodewald for the intensity data collection.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contribution: All authors have accepted responsibility for the entire content of this submitted manuscript and approved the submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: Not relevant. Our group is able to think and act independently.

  5. Conflict of interest: The authors declare no conflicts of interest regarding this article.

  6. Research funding: This research was funded by Universität Münster.

  7. Data availability: Data is available from the corresponding author on well-founded request.

References

1. Tappe, F.; Pöttgen, R. Rev. Inorg. Chem. 2011, 31, 5–25.10.1515/revic.2011.007Search in Google Scholar

2. Kalychak, Y. M.; Zaremba, V. I.; Pöttgen, R.; Lukachuk, M.; Hoffmann, R.-D. Rare Earth–Transition Metal–Indides. In Handbook on the Physics and Chemistry of Rare Earths; Gschneider, K. A.Jr.; Pecharsky, V. K.; Bünzli, J.-C., Eds.; Elsevier: Amsterdam, Vol. 34, 2005; pp. 1–133. chapter 218.10.1016/S0168-1273(04)34001-8Search in Google Scholar

3. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Search in Google Scholar

4. Pöttgen, R.; Lukachuk, M.; Hoffmann, R. D. Z. Kristallogr. 2006, 221, 435–444.10.1524/zkri.2006.221.5-7.435Search in Google Scholar

5. Klenner, S.; Bönnighausen, J.; Pöttgen, R. Z. Anorg. Allg. Chem. 2020, 646, 1359–1364.10.1002/zaac.202000075Search in Google Scholar

6. Pöttgen, R.; Janka, O. Rev. Inorg. Chem. 2023, 43, 357–383.10.1515/revic-2023-0012Search in Google Scholar

7. Schumacher, L.; Schreiner, F.; Koldemir, A.; Janka, O.; Hansen, M. R.; Pöttgen, R. Dalton Trans. 2025, 54, 8100–8112; https://doi.org/10.1039/d4dt03523b.Search in Google Scholar

8. Block, T.; Johnscher, M.; Baldauf, J. A.; Wiethölter, J.; Pöttgen, R. Z. Naturforsch. 2025. to be submitted.Search in Google Scholar

9. Iandelli, A. J. Alloys Compd. 1992, 182, 87–90; https://doi.org/10.1016/0925-8388(92)90577-v.Search in Google Scholar

10. Fickenscher, T.; Hoffmann, R. D.; Mishra, R.; Pöttgen, R. Z. Naturforsch. 2002, 57b, 275–279.10.1515/znb-2002-0303Search in Google Scholar

11. Schappacher, F. M.; Hermes, W.; Pöttgen, R. J. Solid State Chem. 2009, 182, 265–272.10.1016/j.jssc.2008.10.033Search in Google Scholar

12. Pöttgen, R.; Gulden, T. H.; Simon, A. GIT Labor-Fachz. 1999, 43, 133–136.Search in Google Scholar

13. Kußmann, D.; Hoffmann, R. D.; Pöttgen, R. Z. Anorg. Allg. Chem. 1998, 624, 1727–1735.10.1002/(SICI)1521-3749(1998110)624:11<1727::AID-ZAAC1727>3.3.CO;2-SSearch in Google Scholar

14. Yvon, K.; Jeitschko, W.; Parthé, E. J. Appl. Crystallogr. 1977, 10, 73–74.10.1107/S0021889877012898Search in Google Scholar

15. Bruker Corp., Topspin. (version 2.1). Karlsruhe (Germany), 2008.Search in Google Scholar

16. Massiot, D.; Fayon, F.; Capron, M.; King, I.; Le Calvé, S.; Alonso, B.; Durand, J. O.; Bujoli, B.; Gan, Z.; Hoatson, G. Magn. Reson. Chem. 2002, 40, 70–76; https://doi.org/10.1002/mrc.984.Search in Google Scholar

17. Palatinus, L. Acta Crystallogr. 2013, B69, 1–16.10.1107/S0108768112051361Search in Google Scholar PubMed

18. Palatinus, L.; Chapuis, G. J. Appl. Crystallogr. 2007, 40, 786–790; https://doi.org/10.1107/s0021889807029238.Search in Google Scholar

19. Petříček, V.; Dušek, M.; Palatinus, L. Z. Kristallogr. 2014, 229, 345–352.10.1515/zkri-2014-1737Search in Google Scholar

20. Petříček, V.; Palatinus, L.; Plášil, J.; Dušek, M. Z. Kristallogr. 2023, 238, 271–282.10.1515/zkri-2023-0005Search in Google Scholar

21. Villars, P.; Cenzual, K. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2024/25); ASM International®; Materials Park: Ohio (USA), 2024.Search in Google Scholar

22. Johnscher, M.; Tappe, F.; Niehaus, O.; Pöttgen, R. Z. Naturforsch. 2015, 70b, 197–202.10.1515/znb-2014-0255Search in Google Scholar

23. Pöttgen, R.; Fugmann, A.; Hoffmann, R. D.; Rodewald, U. C H.; Niepmann, D. Z. Naturforsch. 2000, 55b, 155–161.10.1515/znb-2000-0204Search in Google Scholar

24. Rayaprol, S.; Doğan, A.; Pöttgen, R. J. Phys.: Condens. Matter 2006, 18, 5473–5492.10.1088/0953-8984/18/23/018Search in Google Scholar

25. Doğan, A.; Rayaprol, S.; Pöttgen, R. J. Phys.: Condens. Matter 2007, 19, 026209 (17 pages).10.1088/0953-8984/19/2/026209Search in Google Scholar

26. Rieger, W.; Nowotny, H.; Benesovsky, F. Monatsh. Chem. 1964, 95, 1502–1503; https://doi.org/10.1007/bf00901704.Search in Google Scholar

27. Zachariasen, W. H. Acta Crystallogr. 1949, 2, 94–99; https://doi.org/10.1107/s0365110x49000217.Search in Google Scholar

28. Remschnig, K.; Le Bihan, T.; Noël, H.; Rogl, P. J. Solid State Chem. 1992, 97, 391–399.10.1016/0022-4596(92)90048-ZSearch in Google Scholar

29. Lukachuk, M.; Pöttgen, R. Z. Kristallogr. 2003, 218, 767–787.10.1524/zkri.218.12.767.20545Search in Google Scholar

30. Bruzzone, G.; Ruggiero, A. F.; Bonino, G. B. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Nat. Rend. 1962, 33, 312–314.Search in Google Scholar

31. Donohue, J. The Structures of the Elements; Wiley: New York, 1974.Search in Google Scholar

32. Hoffmann, R. D.; Pöttgen, R.; Fickenscher, T. H.; Felser, C.; Łątka, K.; Kmieć, R. Solid State Sci. 2002, 4, 609–617.10.1016/S1293-2558(02)01304-3Search in Google Scholar

33. Matar, S. F.; Pöttgen, R.; Chevalier, B. Intermetallics 2014, 51, 18–23.10.1016/j.intermet.2014.02.018Search in Google Scholar

34. Block, T.; Pöttgen, R. Z. Kristallogr. 2020, 235, 423–431.10.1515/zkri-2020-0060Search in Google Scholar

35. Reimann, M. K.; Kösters, J.; Bieliauskas, T.; Pöttgen, R. Z. Naturforsch. 2024, 79b, 349–355.10.1515/znb-2024-0014Search in Google Scholar

36. Kösters, J.; Pöttgen, R. Z. Kristallogr. 2024, 239, 1–6.10.1515/zkri-2023-0043Search in Google Scholar

37. Johnscher, M.; Stein, S.; Niehaus, O.; Benndorf, C.; Heletta, L.; Kersting, M.; Höting, C.; Eckert, H.; Pöttgen, R. Solid State Sci. 2016, 52, 57–64; https://doi.org/10.1016/j.solidstatesciences.2015.12.004.Search in Google Scholar

38. Benndorf, C.; Niehaus, O.; Eckert, H.; Janka, O. Z. Anorg. Allg. Chem. 2015, 641, 168–175; https://doi.org/10.1002/zaac.201400509.Search in Google Scholar

39. Benndorf, C.; Stein, S.; Heletta, L.; Kersting, M.; Eckert, H.; Pöttgen, R. Dalton Trans. 2017, 46, 250–259; https://doi.org/10.1039/c6dt04097g.Search in Google Scholar PubMed

Received: 2025-07-28
Accepted: 2025-08-31
Published Online: 2025-09-23
Published in Print: 2025-10-27

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 15.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2025-0052/html?lang=en
Scroll to top button