Home (NH4)4[SO4][CB11H12]2: a new double salt with carbaborate anions crystallizing in a monoclinic variant of the anti-K2NiF4-type structure
Article
Licensed
Unlicensed Requires Authentication

(NH4)4[SO4][CB11H12]2: a new double salt with carbaborate anions crystallizing in a monoclinic variant of the anti-K2NiF4-type structure

  • Alexandra Friedly and Thomas Schleid EMAIL logo
Published/Copyright: January 24, 2025
Become an author with De Gruyter Brill

Abstract

The new double salt with the empirical formula (NH4)4[SO4][CB11H12]2 can be obtained by the reaction between an aqueous solution of the free acid of the closo-carbaborate (H3O)[CB11H12] and aqueous ammonia (NH3), when the incorporated sulfate anions are introduced by a cation exchanger due to its regeneration with sulfuric acid (H2SO4). (NH4)4[SO4][CB11H12]2 is yielded as colorless, prismatically shaped crystals with a considerable size up to 1 mm. This ammonium sulfate carbaborate crystallizes in the monoclinic space group C2/c with the lattice parameters a = 2715.32(9), b = 713.91(2), c = 1391.24(5) pm and β = 109.203(2)° with four formula units per unit cell. Due to the formation of bridging hydrogen bonds, the [SO4]2− anions and the (NH4)+ cations form 2 {([(N1)H4]2/2[(N2)H4]2/2[(N3)H4]2/1[SO4])2+} layers parallel to the bc plane. Between these positively charged layers, the [CB11H12] anions are placed in fashion of the anti-K2NiF4-type structure, where K+ is replaced with [CB11H12] and [SO4]2−-centered [(NH4)+]6 octahedra, which share four coplanar corners, arrange to the above-mentioned layers. In the Raman spectra of (NH4)4[SO4][CB11H12]2, the dominating bands correspond to the well-known vibration modes of the closo-carbaborate cage. The bands resulting from the (NH4)+ and [SO4]2− ions are visible, but significantly less intense as compared to the vibrations of [CB11H12], which can be explained by the formation of hydrogen bonds.


Corresponding author: Thomas Schleid, Institute for Inorganic Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany, E-mail:
Dedicated to Professor Arndt Simon of the Max Planck Institute for Solid State Research, Stuttgart, on the Occasion of his 85th Birthday.

Acknowledgment

We like to thank Dr. Falk Lissner for the single-crystal X-ray diffraction measurement.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

References

1. Duchêne, L.; Kühnel, R.-S.; Rentsch, D.; Remhof, A.; Hagemann, H.; Battaglia, C. A Highly Stable Sodium Solid-State Electrolyte Based on a Dodeca/decaborate Equimolar Mixture. Chem. Comm. 2017, 53, 4195–4198; https://doi.org/10.1039/c7cc00794a.Search in Google Scholar PubMed

2. Garcia, A.; Müller, G.; Černý, R.; Rentsch, D.; Asakura, R.; Battaglia, C.; Remhof, A. Li4[B10H10][B12H12] as Solid Electrolyte for Solid-State Lithium Batteries. J. Mater. Chem. A 2023, 11, 18996–19003; https://doi.org/10.1039/d3ta03914e.Search in Google Scholar

3. Tang, W. S.; Unemoto, A.; Zhou, W.; Stavila, V.; Matsuo, M.; Wu, H.; Orimo, S.-I.; Udovic, T. J. Unparalleled Lithium and Sodium Superionic Conduction in Solid Electrolytes with Large Monovalent Cage-like Anions. Energy Environ. Sci. 2015, 8, 3637–3645; https://doi.org/10.1039/c5ee02941d.Search in Google Scholar PubMed PubMed Central

4. Hakkak, R. A.; Schleid, Th. Crystal Structure and Thermal Behavior of Three Potential High-Energy Compounds of Hydro-Closo-Borates with Guanidinium. J. Solid State Chem. 2024, 329, 124416 (7 pages).10.1016/j.jssc.2023.124416Search in Google Scholar

5. Zimmermann, L. W.; Hakkak, R. A.; Ranjbar, M.; Schleid, Th. Crystal Structures and Thermal Analyses of Three New High-Energy Hydrazinium Hydro-Closo-Borates. Int. J. Hydrogen Energy 2024, 49, 1469–1477.10.1016/j.ijhydene.2023.10.078Search in Google Scholar

6. Derdziuk, J.; Malinowski, P. J.; Jaroń, T. Synthesis, Structural Characterization and Thermal Decomposition Studies of (N2H5)2[B12H12] and its Solvates. Int. J. Hydrogen Energy 2019, 44, 27030–27038; https://doi.org/10.1016/j.ijhydene.2019.08.158.Search in Google Scholar

7. Bareiß, K. U.; Friedly, A.; Schleid, Th. Die unerwartete Kristallstruktur des Cäsium-Dodekahydro-Monocarba-closo-Dodekaborats Cs[CB11H12]. Z. Naturforsch. 2020, 75b, 1049–1059.10.1515/znb-2020-0172Search in Google Scholar

8. Černý, R.; Brighi, M.; Wu, H.; Zhou, W.; Dimitrievska, M.; Murgia, F.; Gulino, V.; Jongh, P. E. de.; Trump, B. A.; Udovic, T. J. Thermal Polymorphism in Cs[CB11H12]. Molecules 2023, 28, 2296 (12 pages); https://doi.org/10.3390/molecules28052296.Search in Google Scholar PubMed PubMed Central

9. Tiritiris, I.; Schleid, Th. Die Dodekahydro‐closo‐Dodekaborate M2[B12H12] der schweren Alkalimetalle (M+ = K+, Rb+, NH4+, Cs+) und ihre formalen Iodid‐Addukte M3I[B12H12] (≡ MI ∙ M2[B12H12]). Z. Anorg. Allg. Chem. 2003, 629, 1390–1402; https://doi.org/10.1002/zaac.200300098.Search in Google Scholar

10. Schouwink, P.; Sadikin, Y.; van Beek, W.; Černý, R. Experimental Observation of Polymerization from [BH4]– to [B12H12]2– in Mixed-Anion A3[BH4][B12H12](A = Rb+, Cs+). Int. J. Hydrogen Energy 2015, 40, 10902–10907; https://doi.org/10.1016/j.ijhydene.2015.06.022.Search in Google Scholar

11. Tiritiris, I.; Schneck, C.; Schleid, Th. Cs3B13H16: A Mixed-Anion Cesium Hydroborate According to Cs3[BH4][B12H12]. Z. Kristallogr. 2004, 21, 185.Search in Google Scholar

12. Hakkak, R. A.; Tiritiris, I.; Schleid, Th. Synthesis and Characterization of High-Energy Anti-Perovskite Compounds Cs3X[B12H12] Based on Cesium Dodecahydro-Closo-Borate with Molecular Oxoanions (X– = [NO3]–, [ClO3]– and [ClO4]–). Molecules 2024, 29, 382 (13 pages); https://doi.org/10.3390/molecules29020382.Search in Google Scholar PubMed PubMed Central

13. Körbe, S.; Schreiber, P. J.; Michl, J. Chemistry of the Carba-Closo-Dodecaborate(–) Anion, CB11H12–. Chem. Rev. 2006, 106, 5208–5249; https://doi.org/10.1021/cr050548u.Search in Google Scholar PubMed

14. Dimitrieska, M.; Wu, H.; Stavila, V.; Babanova, O. A.; Skoryunov, R. V.; Soloninin, A. V.; Zhou, W.; Trump, B. A.; Andersson, M. S.; Skripov, A. V.; Udovic, T. J. Structural and Dynamical Properties of Potassium Dodecahydro-Monocarba-Closo-Dodecaborate: K[CB11H12]. J. Phys. Chem. C 2020, 33, 17992–18002.10.1021/acs.jpcc.0c05038Search in Google Scholar PubMed PubMed Central

15. Bareiß, K. U.; Enseling, D.; Jüstel, T.; Schleid, Th. Crystal Structure, Raman Spectrum and Tl+ Lone-Pair Luminescence of Thallium(I) Dodecahydro-Monocarba-Closo-Dodecaborate Tl[CB11H12]. Crystals 2022, 12, 1840 (13 pages).10.3390/cryst12121840Search in Google Scholar

16. Brighi, M.; Murgia, F.; Łodziana, Z.; Černý, R. Structural Phase Transitions in Closo-Dicarbadodecaboranes C2B10H12. Inorg. Chem. 2022, 61, 5813–5823; https://doi.org/10.1021/acs.inorgchem.1c04022.Search in Google Scholar PubMed PubMed Central

17. Simon, A. Empty, Filled, and Condensed Metal Clusters. J. Solid State Chem. 1985, 57, 2–16; https://doi.org/10.1016/s0022-4596(85)80055-4.Search in Google Scholar

18. Cordier, S.; Simon, A. The First Chlorofluoride in Niobium Cluster Chemistry Structure of the Double Salt: NaxNb7F21−yCly (x ∼ 2; y ∼ 8). Solid State Sci. 1999, 1, 199–209; https://doi.org/10.1016/s1293-2558(00)80075-8.Search in Google Scholar

19. Sheldrick, G. M. Shelxl-97, Program for the Refinement of Crystal Structures; University of Göttingen: Göttingen (Germany), 1997.Search in Google Scholar

20. Sheldrick, G. M. Crystal Structure Refinement with Shelxl. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar PubMed PubMed Central

21. Sheldrick, G. M. Shelxs-97 Program for the Solution of Crystal Structures; University of Göttingen: Göttingen (Germany), 1997.Search in Google Scholar

22. Balz, D.; Plieth, K. Die Struktur des Kaliumnickelfluorids K2NiF4. Z. Elektrochem. 1955, 59, 545–551; https://doi.org/10.1002/bbpc.19550590613.Search in Google Scholar

23. Tiritiris, I.; Weidlein, J.; Schleid, Th. Dodekahydro-closo-Dodekaborat-Halogenide der schweren Alkalimetalle mit der Formel M3X[B12H12] (M = K – Cs, NH4 ; X = Cl und Br) / Dodecahydro-closo-dodecaborate Halides of the Heavy Alkali Metals with the Formula M3X[B12H12] (M = K – Cs, NH4 ; X = Cl and Br). Z. Naturforsch. 2005, 60b, 627–639; https://doi.org/10.1515/znb-2005-0605.Search in Google Scholar

24. Schlemper, E. O.; Hamilton, W. C. Neutron-Diffraction Study of the Structures of Ferroelectric and Paraelectric Ammonium Sulfate. J. Chem. Phys. 1966, 44, 4498–4509; https://doi.org/10.1063/1.1726666.Search in Google Scholar

25. Comodi, P.; Fastelli, M.; Criniti, G.; Glazyrin, K.; Zucchini, A. High-Pressure Behavior of Mascagnite from Single Crystal Synchrotron X-Ray Diffraction Data. Crystals 2021, 11, 976 (13 pages); https://doi.org/10.3390/cryst11080976.Search in Google Scholar

26. Malec, L. M.; Gryl, M.; Stadnicka, K. M. Unmasking the Mechanism of Structural Para-To-Ferroelectric Phase Transition in (NH4)2SO4. Inorg. Chem. 2018, 57, 4340–4351; https://doi.org/10.1021/acs.inorgchem.7b03161.Search in Google Scholar PubMed

27. Černý, R.; Brighi, M.; Murgia, F.; Udovic, T. J. Thermal Polymorphism of Rb[CB11H12]. Unpublished Results, Personal Communication, 2023.Search in Google Scholar

28. Kononova, E. G.; Bukalov, S. S.; Leites, L. A.; Lyssenko, K. A.; Ol’shevskaya, V. A. Vibrational Spectra and Structure of Cesium Salts of Icosahedral Monocarba-Closo-Dodecarborate Anion, [CB11H12]–, and its Nido-Derivative, [CB10H13]–. Russ. Chem. Bull. Int. 2003, 52, 85–92. https://doi.org/10.1023/a:1022436029305.10.1023/A:1022436029305Search in Google Scholar

29. Venkateswarlu, P.; Bist, H. D.; Jain, Y. S. Laser-excited Raman Spectrum of Ammonium Sulfate Single Crystals. J. Raman Spectrosc. 1975, 3, 143–151; https://doi.org/10.1002/jrs.1250030205.Search in Google Scholar

30. Shannon, R. D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallogr. 1976, A32, 751–767; https://doi.org/10.1107/s0567739476001551.Search in Google Scholar

31. Sidey, V. On the Effective Ionic Radii for Ammonium. Acta Crystallogr. 2016, B72, 626–633; https://doi.org/10.1107/s2052520616008064.Search in Google Scholar

Received: 2024-10-22
Accepted: 2024-11-22
Published Online: 2025-01-24
Published in Print: 2025-01-29

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 11.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2024-0096/html?lang=en
Scroll to top button