Abstract
Three chloridocuprate complexes with methylene blue counterions of the chemical compositions [MB]+2[CuCl4]2− · H2O (1), [MB]+2[CuCl4]2− (2) and [(MB)+(CuCl2)−]3 (3) (where [MB]+ – methylthioninium cation; methylene blue cation) have been prepared by solvent-assisted mechanochemical synthesis. The reactions were carried out by mixing the copper(II) chloride dihydrate, CuCl2⋅2H2O, and methylene blue pentahydrate, [MB]+Cl− · 5H2O by grinding in an agate mortar with the addition of DMF as a solvent. The crystal structures of the compounds have been determined by single-crystal X-ray diffraction. The content of an asymmetric unit of the crystals consists of: (1) a tetrahedral [CuCl4]2− anion, two [MB]+ cations and one water molecule of crystallization; (2) a tetrahedral [CuCl4]2− anion and two [MB]+ cations; (3) trimeric [(MB)+(CuCl2)−]3 molecules with the Cu atoms coordinated by a nitrogen atom of the phenothiazine ring and two chlorine ions in a trigonal planar geometry with the copper atom in the oxidation state of +1.
Acknowledgments
The authors are grateful to the colleagues, especially to Odil Choriev, in the Institute of Bioorganic Chemistry of the Academy of Sciences of the Republic of Uzbekistan for assistance in the X-ray experiments.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Raj, M. M., Dharmaraja, A., Kavitha, S. J., Panchanatheswaran, K., Lynch, D. E. Inorg. Chim. Acta 2007, 360, 1799–2008; https://doi.org/10.1016/j.ica.2006.09.022.Suche in Google Scholar
2. McDonagh, E. M., Bautista, J. M., Youngster, I., Altman, R. B., Klein, T. E. Pharmacogenetics Genom. 2013, 23, 498–508; https://doi.org/10.1097/fpc.0b013e32836498f4.Suche in Google Scholar
3. Ginimuge, P. R., Jyothi, S. D. J. Anaesthesiol. Clin. Pharmacol. 2010 26, 517–520; https://doi.org/10.4103/0970-9185.74599.Suche in Google Scholar
4. Matisoff, A. J., Panni, M. K. Anesthesiology 2006, 105, 228 https://doi.org/10.1097/00000542-200607000-00043 (1 page).Suche in Google Scholar PubMed
5. Garza, F., Kearney, T. E. Methylene blue. In Poisoning & Drug Overdose, 6th ed.; Olson, K. R., Ed. McGraw Hill Medical: New York, 2012; pp. 510–511.Suche in Google Scholar
6. Haouzi, P., McCann, M., Tubbs, N., Judenherc-Haouzi, A., Cheung, J., Bouillaud, F. Toxicol. Sci. 2019, 170, 82–94; https://doi.org/10.1093/toxsci/kfz081.Suche in Google Scholar PubMed PubMed Central
7. Haouzi, P., Gueguinou, M., Sonobe, T., Judenherc-Haouzi, A., Tubbs, N., Trebak, M., Cheung, J., Bouillaud, F. Clin. Toxicol. 2018, 56, 828–840; https://doi.org/10.1080/15563650.2018.1429615.Suche in Google Scholar PubMed PubMed Central
8. Biot, C., Bauer, H., Schirmer, R. H., Davioud-Charvet, E. J. Med. Chem. 2004, 47, 5972–5983; https://doi.org/10.1021/jm0497545.Suche in Google Scholar PubMed
9. Coulibaly, B., Zoungrana, A., Mockenhaupt, F. P., Schirmer, R. H., Klose, C., Mansmann, U., Meissner, P. E., Müller, O. PLoS One 2009, 4, e5318 https://doi.org/10.1371/journal.pone.0005318 (6 pages).Suche in Google Scholar PubMed PubMed Central
10. Färber, P. M., Arscott, L. D., Williams, C. H.Jr., Becker, K., Schirmer, R. H. FEBS Lett. 1998, 422, 311–314.10.1016/S0014-5793(98)00031-3Suche in Google Scholar
11. Amadoruge, P. C., Barnham, K. J. Int. J. Alzheimer’s Dis. 2011, 2011, 542043 (9 pages).10.4061/2011/542043Suche in Google Scholar PubMed PubMed Central
12. Wischik, C. M., Edwards, P. C., Lai, R. Y., Roth, M., Harrington, C. R. Proc. Natl. Acad. Sci. U. S. A. 1996, 93, 11213–11218; https://doi.org/10.1073/pnas.93.20.11213.Suche in Google Scholar PubMed PubMed Central
13. Oz, M., Lorke, D. E., Petroianu, G. A. Biochem. Pharmacol. 2009, 78, 927–932; https://doi.org/10.1016/j.bcp.2009.04.034.Suche in Google Scholar PubMed
14. Scigliano, G., Scigliano, G. A. Med. Hypotheses 2021, 146, 110455–110470; https://doi.org/10.1016/j.mehy.2020.110455.Suche in Google Scholar PubMed PubMed Central
15. Saikrupa, B. V., Muthukumar, M., Kavya, S., Suma, P. K. J. Drug Deliv. Therapeut. 2022, 12, 181–186; https://doi.org/10.22270/jddt.v12i3.5438.Suche in Google Scholar
16. Cwalinski, T., Polom, W., Marano, L., Roviello, G., D’Angelo, A., Cwalina, N., Matuszewski, M., Roviello, F., Jaskiewicz, J., Polom, K. J. Clin. Med. 2020, 9, 3538–3550; https://doi.org/10.3390/jcm9113538.Suche in Google Scholar PubMed PubMed Central
17. Slooter, M. D., Janssen, A., Bemelman, W. A., Tanis, P. J., Hompes, R. Tech. Coloproctol. 2019, 23, 305–313; https://doi.org/10.1007/s10151-019-01973-4.Suche in Google Scholar PubMed PubMed Central
18. Curry, S. Ann. Emerg. Med. 1982, 11, 214–221; https://doi.org/10.1016/s0196-0644(82)80502-7.Suche in Google Scholar PubMed
19. Manivannan, R., Kameshwaran, S., Srividhya, V., Praveen, R., Pravin, R. Int. J. Allied Med. Sci. Clin. Res. 2021, 9, 108–112.Suche in Google Scholar
20. Rehman, H. West. J. Med. 2001, 175, 193–196; https://doi.org/10.1136/ewjm.175.3.193.Suche in Google Scholar PubMed PubMed Central
21. Kayabaşı, Y., Erbaş, O. Dokkyo J. Med. Sci. 2020, 6, 136–145.10.5606/fng.btd.2020.25035Suche in Google Scholar
22. Mowry, S., Ogren, P. J. J. Chem. Educ. 1999, 76, 971–974; https://doi.org/10.1021/ed076p970.Suche in Google Scholar
23. Canossa, S., Bacchi, A., Graiff, C., Pelagatti, P., Predieri, G., Ienco, A., Manca, G., Mealli, C. Inorg. Chem. 2017, 56, 3512–3516; https://doi.org/10.1021/acs.inorgchem.6b02980.Suche in Google Scholar PubMed
24. Impert, O., Katafias, A., Kita, P., Mills, A., Pietkiewicz-Graczyk, A., Wrzeszcz, G. Dalton Trans. 2003, 348–353; https://doi.org/10.1039/b205786g.Suche in Google Scholar
25. CrysAlis Pro Software System (version 1.171.40.84a), Intelligent Data Collection and Processing Software for Small Molecule and Protein Crystallography; Rigaku Oxford Diffraction: Yarnton, Oxfordshire (U. K.), 2020.Suche in Google Scholar
26. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Suche in Google Scholar
27. Sheldrick, G. M. Acta Crystallogr. 2015, A71, 3–8.10.1107/S2053273314026370Suche in Google Scholar PubMed PubMed Central
28. Sheldrick, G. M. Crystallographic Computing 5, From Chemistry to Biology; Moras, D., Podjarny, A. D., Thierry, J. C., Eds. International Union of Crystallography, Oxford University Press: Oxford, 1992; pp. 145–157.Suche in Google Scholar
29. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J., Wood, P. A. J. Appl. Crystallogr. 2008, 41, 466–470; https://doi.org/10.1107/s0021889807067908.Suche in Google Scholar
30. Spek, A. L. Acta Crystallogr. 2015, C71, 9–18.Suche in Google Scholar
31. Spek, A. L. Acta Crystallogr. 2009, D65, 148–155; https://doi.org/10.1107/s090744490804362x.Suche in Google Scholar
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/znb-2022-0146).
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- In this issue
- Research Articles
- Photoredox-catalyzed three-component difluorobenzylation of quinoxalin-2(1H)-ones with unactivated vinylarenes and BrCF2CO2Et/HCF2CO2H
- Catalyst-free direct synthesis of indeno[1,2-b]indol-5(4bH)-yl benzimidamides
- Crystal structure of three chloridocuprate(I, II) complexes with methylene blue (MB) counterions
- Crystal structure, photophysical properties, and DFT calculations of a boron difluoride curcumin complex
- The double cluster compound [Nb6Cl14(MeCN)4][Nb6Cl14(pyz)4]·6MeCN (Me: methyl, pyz: pyrazine) with a layered structure resulting from weak intermolecular interactions
- Expanding transition metal borate chemistry to include main group elements: high-pressure synthesis and structural relation of β-MgB4O7
- Eu2Ru3Si5 and Eu2Ir3Ga5 – first europium compounds with U2Mn3Si5-type structure but different europium valence
- Mössbauer-spectroscopic characterization of the stannides Sr2Pd2Sn and Eu2Pd2Sn
- Orthoamide und Iminiumsalze, CVIII. Umsetzungen von Orthoamiden der Alkincarbonsäuren mit CH/NH-aciden, tautomeriefähigen Verbindungen
- Book Review
- Thomas J. Meade (Guest Editor), Astrid Sigel, Helmut Sigel, Eva Freisinger, Roland K. O. Sigel (Series Editors): Molecular Bio-Sensors and the Role of Metal Ions
Artikel in diesem Heft
- Frontmatter
- In this issue
- Research Articles
- Photoredox-catalyzed three-component difluorobenzylation of quinoxalin-2(1H)-ones with unactivated vinylarenes and BrCF2CO2Et/HCF2CO2H
- Catalyst-free direct synthesis of indeno[1,2-b]indol-5(4bH)-yl benzimidamides
- Crystal structure of three chloridocuprate(I, II) complexes with methylene blue (MB) counterions
- Crystal structure, photophysical properties, and DFT calculations of a boron difluoride curcumin complex
- The double cluster compound [Nb6Cl14(MeCN)4][Nb6Cl14(pyz)4]·6MeCN (Me: methyl, pyz: pyrazine) with a layered structure resulting from weak intermolecular interactions
- Expanding transition metal borate chemistry to include main group elements: high-pressure synthesis and structural relation of β-MgB4O7
- Eu2Ru3Si5 and Eu2Ir3Ga5 – first europium compounds with U2Mn3Si5-type structure but different europium valence
- Mössbauer-spectroscopic characterization of the stannides Sr2Pd2Sn and Eu2Pd2Sn
- Orthoamide und Iminiumsalze, CVIII. Umsetzungen von Orthoamiden der Alkincarbonsäuren mit CH/NH-aciden, tautomeriefähigen Verbindungen
- Book Review
- Thomas J. Meade (Guest Editor), Astrid Sigel, Helmut Sigel, Eva Freisinger, Roland K. O. Sigel (Series Editors): Molecular Bio-Sensors and the Role of Metal Ions