Startseite Crystal structure of three chloridocuprate(I, II) complexes with methylene blue (MB) counterions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Crystal structure of three chloridocuprate(I, II) complexes with methylene blue (MB) counterions

  • Vahobjon Kh. Sabirov EMAIL logo und Mukarram X. Kadirova
Veröffentlicht/Copyright: 14. März 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Three chloridocuprate complexes with methylene blue counterions of the chemical compositions [MB]+2[CuCl4]2− · H2O (1), [MB]+2[CuCl4]2− (2) and [(MB)+(CuCl2)]3 (3) (where [MB]+ – methylthioninium cation; methylene blue cation) have been prepared by solvent-assisted mechanochemical synthesis. The reactions were carried out by mixing the copper(II) chloride dihydrate, CuCl2⋅2H2O, and methylene blue pentahydrate, [MB]+Cl · 5H2O by grinding in an agate mortar with the addition of DMF as a solvent. The crystal structures of the compounds have been determined by single-crystal X-ray diffraction. The content of an asymmetric unit of the crystals consists of: (1) a tetrahedral [CuCl4]2− anion, two [MB]+ cations and one water molecule of crystallization; (2) a tetrahedral [CuCl4]2− anion and two [MB]+ cations; (3) trimeric [(MB)+(CuCl2)]3 molecules with the Cu atoms coordinated by a nitrogen atom of the phenothiazine ring and two chlorine ions in a trigonal planar geometry with the copper atom in the oxidation state of +1.


Corresponding author: Vahobjon Kh. Sabirov, Institute of Pharmaceutical Education and Research, 46 Building, 19 Quarter, Yunusabad District, 100114, Tashkent, Uzbekistan, E-mail:

Acknowledgments

The authors are grateful to the colleagues, especially to Odil Choriev, in the Institute of Bioorganic Chemistry of the Academy of Sciences of the Republic of Uzbekistan for assistance in the X-ray experiments.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Raj, M. M., Dharmaraja, A., Kavitha, S. J., Panchanatheswaran, K., Lynch, D. E. Inorg. Chim. Acta 2007, 360, 1799–2008; https://doi.org/10.1016/j.ica.2006.09.022.Suche in Google Scholar

2. McDonagh, E. M., Bautista, J. M., Youngster, I., Altman, R. B., Klein, T. E. Pharmacogenetics Genom. 2013, 23, 498–508; https://doi.org/10.1097/fpc.0b013e32836498f4.Suche in Google Scholar

3. Ginimuge, P. R., Jyothi, S. D. J. Anaesthesiol. Clin. Pharmacol. 2010 26, 517–520; https://doi.org/10.4103/0970-9185.74599.Suche in Google Scholar

4. Matisoff, A. J., Panni, M. K. Anesthesiology 2006, 105, 228 https://doi.org/10.1097/00000542-200607000-00043 (1 page).Suche in Google Scholar PubMed

5. Garza, F., Kearney, T. E. Methylene blue. In Poisoning & Drug Overdose, 6th ed.; Olson, K. R., Ed. McGraw Hill Medical: New York, 2012; pp. 510–511.Suche in Google Scholar

6. Haouzi, P., McCann, M., Tubbs, N., Judenherc-Haouzi, A., Cheung, J., Bouillaud, F. Toxicol. Sci. 2019, 170, 82–94; https://doi.org/10.1093/toxsci/kfz081.Suche in Google Scholar PubMed PubMed Central

7. Haouzi, P., Gueguinou, M., Sonobe, T., Judenherc-Haouzi, A., Tubbs, N., Trebak, M., Cheung, J., Bouillaud, F. Clin. Toxicol. 2018, 56, 828–840; https://doi.org/10.1080/15563650.2018.1429615.Suche in Google Scholar PubMed PubMed Central

8. Biot, C., Bauer, H., Schirmer, R. H., Davioud-Charvet, E. J. Med. Chem. 2004, 47, 5972–5983; https://doi.org/10.1021/jm0497545.Suche in Google Scholar PubMed

9. Coulibaly, B., Zoungrana, A., Mockenhaupt, F. P., Schirmer, R. H., Klose, C., Mansmann, U., Meissner, P. E., Müller, O. PLoS One 2009, 4, e5318 https://doi.org/10.1371/journal.pone.0005318 (6 pages).Suche in Google Scholar PubMed PubMed Central

10. Färber, P. M., Arscott, L. D., Williams, C. H.Jr., Becker, K., Schirmer, R. H. FEBS Lett. 1998, 422, 311–314.10.1016/S0014-5793(98)00031-3Suche in Google Scholar

11. Amadoruge, P. C., Barnham, K. J. Int. J. Alzheimer’s Dis. 2011, 2011, 542043 (9 pages).10.4061/2011/542043Suche in Google Scholar PubMed PubMed Central

12. Wischik, C. M., Edwards, P. C., Lai, R. Y., Roth, M., Harrington, C. R. Proc. Natl. Acad. Sci. U. S. A. 1996, 93, 11213–11218; https://doi.org/10.1073/pnas.93.20.11213.Suche in Google Scholar PubMed PubMed Central

13. Oz, M., Lorke, D. E., Petroianu, G. A. Biochem. Pharmacol. 2009, 78, 927–932; https://doi.org/10.1016/j.bcp.2009.04.034.Suche in Google Scholar PubMed

14. Scigliano, G., Scigliano, G. A. Med. Hypotheses 2021, 146, 110455–110470; https://doi.org/10.1016/j.mehy.2020.110455.Suche in Google Scholar PubMed PubMed Central

15. Saikrupa, B. V., Muthukumar, M., Kavya, S., Suma, P. K. J. Drug Deliv. Therapeut. 2022, 12, 181–186; https://doi.org/10.22270/jddt.v12i3.5438.Suche in Google Scholar

16. Cwalinski, T., Polom, W., Marano, L., Roviello, G., D’Angelo, A., Cwalina, N., Matuszewski, M., Roviello, F., Jaskiewicz, J., Polom, K. J. Clin. Med. 2020, 9, 3538–3550; https://doi.org/10.3390/jcm9113538.Suche in Google Scholar PubMed PubMed Central

17. Slooter, M. D., Janssen, A., Bemelman, W. A., Tanis, P. J., Hompes, R. Tech. Coloproctol. 2019, 23, 305–313; https://doi.org/10.1007/s10151-019-01973-4.Suche in Google Scholar PubMed PubMed Central

18. Curry, S. Ann. Emerg. Med. 1982, 11, 214–221; https://doi.org/10.1016/s0196-0644(82)80502-7.Suche in Google Scholar PubMed

19. Manivannan, R., Kameshwaran, S., Srividhya, V., Praveen, R., Pravin, R. Int. J. Allied Med. Sci. Clin. Res. 2021, 9, 108–112.Suche in Google Scholar

20. Rehman, H. West. J. Med. 2001, 175, 193–196; https://doi.org/10.1136/ewjm.175.3.193.Suche in Google Scholar PubMed PubMed Central

21. Kayabaşı, Y., Erbaş, O. Dokkyo J. Med. Sci. 2020, 6, 136–145.10.5606/fng.btd.2020.25035Suche in Google Scholar

22. Mowry, S., Ogren, P. J. J. Chem. Educ. 1999, 76, 971–974; https://doi.org/10.1021/ed076p970.Suche in Google Scholar

23. Canossa, S., Bacchi, A., Graiff, C., Pelagatti, P., Predieri, G., Ienco, A., Manca, G., Mealli, C. Inorg. Chem. 2017, 56, 3512–3516; https://doi.org/10.1021/acs.inorgchem.6b02980.Suche in Google Scholar PubMed

24. Impert, O., Katafias, A., Kita, P., Mills, A., Pietkiewicz-Graczyk, A., Wrzeszcz, G. Dalton Trans. 2003, 348–353; https://doi.org/10.1039/b205786g.Suche in Google Scholar

25. CrysAlis Pro Software System (version 1.171.40.84a), Intelligent Data Collection and Processing Software for Small Molecule and Protein Crystallography; Rigaku Oxford Diffraction: Yarnton, Oxfordshire (U. K.), 2020.Suche in Google Scholar

26. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Suche in Google Scholar

27. Sheldrick, G. M. Acta Crystallogr. 2015, A71, 3–8.10.1107/S2053273314026370Suche in Google Scholar PubMed PubMed Central

28. Sheldrick, G. M. Crystallographic Computing 5, From Chemistry to Biology; Moras, D., Podjarny, A. D., Thierry, J. C., Eds. International Union of Crystallography, Oxford University Press: Oxford, 1992; pp. 145–157.Suche in Google Scholar

29. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J., Wood, P. A. J. Appl. Crystallogr. 2008, 41, 466–470; https://doi.org/10.1107/s0021889807067908.Suche in Google Scholar

30. Spek, A. L. Acta Crystallogr. 2015, C71, 9–18.Suche in Google Scholar

31. Spek, A. L. Acta Crystallogr. 2009, D65, 148–155; https://doi.org/10.1107/s090744490804362x.Suche in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/znb-2022-0146).


Received: 2022-12-03
Accepted: 2023-02-06
Published Online: 2023-03-14
Published in Print: 2023-05-25

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/znb-2022-0146/html?lang=de
Button zum nach oben scrollen