Home Synthesis, hydrogen bond interactions and crystal structure elucidation of some stable 2H-imidazolium salts
Article Publicly Available

Synthesis, hydrogen bond interactions and crystal structure elucidation of some stable 2H-imidazolium salts

  • Ahmed Al-Sheikh EMAIL logo , Eyad Mallah , Kamal Sweidan , Qais Abualassal , Zead Abudayeh , Luay Abu-Qatouseh and Manfred Steimann
Published/Copyright: November 26, 2021
Become an author with De Gruyter Brill

Abstract

Reaction of 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene (1) with phthalimide, quinazolinedione, thiophenole and 4-pyridinethiole led to the formation of the hydrogen-bonded salts, imidazolium phthalimide (2), imidazolium quinazolinedione (3), imidazolium thiophenolate (4) and imidazolium 4-pyridinethiolate (5), respectively, in good yield. In crystals of 2, the anion is linked to the imidazolium cation by a C–H···O hydrogen bond, while in 3 and 5 C–H···N hydrogen bonds are observed. In 4, the imidazolium ion is linked to the anion by C–H···S hydrogen bonds. In compounds 2, 3 and 5, the interionic hydrogen bonds are close to linearity, while the interionic hydrogen bond angle in 4 is 148.5(9)°.

1 Introduction

Hydrogen bonds are important in chemistry and biochemistry. It is fundamental to the double helix arrangement of the DNA molecule [1], the α-helix in protein [2] and β-pleated sheet formation [3] in a polypeptide chain. Also many amino acids contain alcohol or thiol groups that additionally may form hydrogen bonds and stabilize a particular protein conformation.

In 2H-imidazolium salts which are considered as ionic liquid compounds, the imidazolium ion is commonly linked to the counter anion by hydrogen bonds.

In continuing our investigation of the hydrogen bonds formed by the interaction between 2H-imidazolium ion with sulfur, oxygen and nitrogen atoms [4], [5], [6], [7], [8], [9], [10], [11], [12], we report the synthesis and crystal structure elucidation of some stable 2H-imidazolium salts.

2 Results and discussion

The imidazolium phthalimide (2) and imidazolium quinazolinedione (3) are formed readily by the reaction of the carbene 1 with phthalimide and quinazolinedione in THF (Scheme 1). Single crystals of compounds 2 and 3 were obtained by recrystallization from Acetone-Et2O by vapor diffusion. Salt 2 crystallizes in the monoclinic space group P21/c with Z = 4, while salt 3 crystallizes in the triclinic space group P 1 with Z = 2 (Tables 1 3, Figures 1 and 2).

Scheme 1: 
Synthesis of 2H-imidazolium salts 2–5. Reagents and conditions: i. phthalimide, THF, −50 °C, overnight; ii. quinazolinedione, THF, −50 °C, overnight; iii. thiophenole, Et2O, −50 °C, overnight; iv. pyridinethiole, Et2O, −50 °C, overnight.
Scheme 1:

Synthesis of 2H-imidazolium salts 25. Reagents and conditions: i. phthalimide, THF, −50 °C, overnight; ii. quinazolinedione, THF, −50 °C, overnight; iii. thiophenole, Et2O, −50 °C, overnight; iv. pyridinethiole, Et2O, −50 °C, overnight.

Table 1:

Single-crystal crystallographic data of imidazolium phthalimide (2), imidazolium quinazolinedione (3), imidazolium thiophenole (4) and imidazolium 4-pyridinethiole (5).

2 3 4 5
Formula C19H25 N3O2 C19H26N4O2 C17H26N2S C16H25N3S
M r 327.42 342.44 290.46 291.46
Crystal size, mm3 0.30 × 0.15 × 0.05 0.2 × 0.1 × 0.05 0.20 × 0.15 × 0.15 0.50 × 0.15 × 0.15
Crystal system Monoclinic Triklin Monoclinic Monoclinic
Space group P21/c P 1 P21/c P21/c
a, Å 12.0238(11) 9.3323(14) 12.0568(17) 6.7862(8)
b, Å 10.4741(9) 9.4943(15) 10.8633(11) 24.141(2)
c, Å 14.8372(15) 10.7254(18) 13.791(2) 10.7282(16)
α, deg 90 92.338(13) 90 90
β, deg 108.620(7) 96.005(13) 108.750(11) 109.525(10)
γ, deg 90 91.436(13) 90 90
V, Å3 1770.8(3) 943.9(3) 1710.4(4) 1656.5(3)
Z 4 2 4 4
D calcd, g cm−3 1.228 1.205 1.128 1.169
μ (MoKα), cm−1 0.081 0.080 0.183 0.191
F (000), e 704 368 632 632
hkl range −15 ≤ h ≤ +15 −11 ≤ h ≤ +11 −15 ≤ h ≤ +15 −8 ≤ h ≤ +8
−13 ≤ k ≤ +13 −11 ≤ k ≤ +12 −13 ≤ k ≤ +13 −30 ≤ k ≤ +30
−18 ≤ l ≤ +18 −13 ≤ l ≤ +13 −17 ≤ l ≤ +17 −13≤ l ≤ +13
θ range, deg 3.28–26.37 3.48–26.80 3.31–26.37 3.19–26.37
Reflections collected 24,830 13,922 23,740 23,515
Independent reflections 3604 3992 3487 3391
R int 0.1141 0.0879 0.1588 0.1432
Completeness to θ max, % 99.8 99.0 99.8 99.9
Refinement method Full-matrix least-squares on F 2
Data/restraints/parameters 3604/0/306 3992/0/330 3487/0/286 3391/0/282
Final R1/wR2 [I > 2 σ(I)] 0.0571/0.1002 0.0619/0.1150 0.0803/0.1182 0.0499/0.1009
0.1002
R1/wR2a (all reflexions) 0.0860/0.1090 0.0907/0.1255 0.1101/0.1268 0.0689/0.1077
GoF (F 2)b 1.101 1.150 1.219 1.059
Δρ fin(max/min), e Å−3 0.18/−0.19 0.39/−0.35 0.34/−0.29 0.73/−0.70
  1. a R1 = ||F o | − |F c ||/Σ|F o |, wR2 = [Σw(F o 2F c 2)2/Σw(F o 2)2]1/2, w = [σ 2(F o 2)+(AP)2+BP]−1, where P = (Max (F o 2, 0)+2F c 2)/3; bGoF = [Σw(F o 2 − F c 2)2/(n obs − n param)]1/2.

Table 2:

Selected bond lengths (Å) and angles (deg) for imidazolium phthalimide (2).

N(1)–C(2) 1.330(2) C(26)–O(29) 1.229(2)
N(1)–C(5) 1.394(2) C(26)–N(27) 1.377(3)
N(1)–C(6) 1.486(2) N(27)–C(28) 1.360(2)
C(2)–N(3) 1.327(2) C(28)–O(30) 1.242(2)
N(3)–C(4) 1.396(2) C(20)–C(28) 1.504(3)
N(3)–C(9) 1.488(3) C(25)–C(26) 1.512(3)
C(2)–N(1)–C(6) 124.55(15) N(27)–C(26)–C(25) 109.80(16)
C(5)–N(1)–C(6) 126.02(15) C(28)–N(27)–C(26) 107.57(15)
N(3)–C(2)–N(1) 108.68(16) O(30)–C(28)–N(27) 125.47(18)
C(2)–N(1)–C(5) 109.01(15) O(30)–C(28)–C(20) 123.66(17)
O(29)–C(26)–N(27) 126.21(18) N(27)–C(28)–C(20) 110.87(16)
O(29)–C(26)–C(25) 123.98(19)
Table 3:

Selected bond lengths (Å) and angles (deg) for imidazolium quinazolinedione (3).

.C(4)–C(5) 1.412(3) C(9)–N(10) 1.339(3)
C(4)–C(7) 1.464(3) C(26)–O(29) 1.229(2)
C(5)–N(10) 1.370(2) N(20)–C(21) 1.391(2)
C(7)–O(11) 1.230(2) C(22)–N(23) 1.387(2)
C(7)–N(8) 1.368(2) N(23)–C(24) 1.330(2)
N(8)–C(9) 1.406(2) C(25)–C(26) 1.512(3)
C(9)–O(12) 1.248(2) N(20)–C(24) 1.332(2)
O(11)–C(7)–N(8) 122.03(18) N(10)–C(9)–N(8) 120.15(17)
O(11)–C(7)–C(4) 124.11(17) C(9)–N(10)–C(5) 117.84(16)
N(8)–C(7)–C(4) 113.87(16) C(24)–N(20)–C(21) 108.90(15)
C(7)–N(8)–C(9) 125.68(17) C(24)–N(23)–C(22) 109.24(15)
O(12)–C(9)–N(10) 122.90(17) N(23)–C(24)–N(20) 108.38(16)
O(12)–C(9)–N(8) 116.95(17)
Figure 1: 
Molecular structure of the ion pair of imidazolium phthalimide (2) in the crystal.
Figure 1:

Molecular structure of the ion pair of imidazolium phthalimide (2) in the crystal.

Figure 2: 
Molecular structure of the ion pair of imidazolium quinazolinedione (3) in the crystal.
Figure 2:

Molecular structure of the ion pair of imidazolium quinazolinedione (3) in the crystal.

The crystal structure analyses of 2 and 3 reveal that the heterocyclic anions and imidazolium cations are linked by hydrogen bonds. A summary of important hydrogen bond interactions is given in Table 6 below. In crystals of 2, the imidazolium ion and phthalimide anion are linked by C2–H2···O30 = 2.216(3) Å, while in crystals of 3, the imidazolium cation and quinazolinedione anion are linked by C24–H24···N10 = 2.247(2) Å. In both compounds 2 and 3, the interionic hydrogen bonds are close to linearity (2: C2–H2···O30 = 177.8(9)° and 3: C24–H24···N10 = 173.6(9)°).

The bond lengths of phthalimide anion in 2 [C(28)–O(30) = 1.24(2) Å, C(26)–O(29) = 1.229(2) Å, C(28)–N(27) = 1.36(2) Å and C(26)–N(27) = 1.377(2) Å] indicate that there is a symmetrical distribution of negative charge around N(27). The bonds lengths of quinazolinedione anion in 3 [C(9)–O(12) = 1.248(2) Å, C(7)–O(11) = 1.23(2) Å, C(9)–N(10) = 1.339(2) Å, C(9)–N(8) = 1.40(2) Å and C(7)–N(8) = 1.36(2) Å] indicate that the negative charge is mainly delocalized over O(12)–C(9)–N(10).

The packing of 2 in the crystal shows no interaction between the carbonyl oxygen of the phthalimide anion and methyl protons of a neighboring imidazolium cation. While in 3, the molecule packing gives evidence to very weak interactions between the carbonyl oxygen atom of the quinazolinedione anion and methyl protons of a neighboring imidazolium cation [O(11)···H(28c) = 2.520(2) Å and O(11)···H(29b) = 2.550(2) Å].

The imidazolium thiophenolate 4 and imidazolium 4-pyridinethiolate 5 are obtained from the reaction of carbene 1 with thiophenol and 4-pyridinethiol, respectively, in diethyl ether (Scheme 1). Both salts 4 and 5 crystallize in the monoclinic space group P21/c with Z = 4 (Tables 1, 4 6, Figures 3 and 4).

Table 4:

Selected bond lengths (Å) and angles (deg) for imidazolium thiophenolate (4).

S(1)–C(1) 1.749(3) N(11)–C(12) 1.390(4)
C(10)–N(11) 1.323(4) C(12)–C(13) 1.357(4)
C(10)–N(14) 1.331(3) C(13)–N(14) 1.384(4)
C(2)–C(1)–S(1) 121.0(2) N(11)–C(10)–N(14) 109.1(3)
C(6)–C(1)–S(1) 122.1(2)
Table 5:

Selected bond lengths (Å) and angles (deg) for imidazolium 4-pyridinethiolate (5).

C(1)–N(2) 1.334(2) C(15)–C(16) 1.403(3)
C(1)–N(5) 1.335(2) C(17)–N(18) 1.341(3)
N(2)–C(3) 1.386(2) N(18)–C(19) 1.340(3)
C(4)–N(5) 1.390(2) C(19)–C(20) 1.364(3)
S(14)–C(15) 1.723(2)
N(2)–C(1)–N(5) 108.5(3) C(20)–C(15)–S(14) 123.6(2)
C(16)–C(15)–C(20) 113.9(2) C(19)–N(18)–C(17) 114.2(2)
C(16)–C(15)–S(14) 122.4(2)
Table 6:

Selected bond lengths (Å) and angles (deg) of the interionic hydrogen bonds C–H···Xa.

C–H H···X C–H···X
2 0.914(6) 2.216(3) 177.8(9)
3 0.972(6) 2.247(2) 173.6(9)
4 0.974(7) 2.492(10) 148.5(9)
5 0.926(7) 2.283(2) 171.7(10)
  1. aX = O (2), N (3 and 5), S (4).

Figure 3: 
Molecular structure of the ion pair of imidazolium thiophenolate (4) in the crystal.
Figure 3:

Molecular structure of the ion pair of imidazolium thiophenolate (4) in the crystal.

Figure 4: 
Molecular structure of the ion pair of imidazolium 4-pyridinethiolate (5) in the crystal.
Figure 4:

Molecular structure of the ion pair of imidazolium 4-pyridinethiolate (5) in the crystal.

The crystal structure analyses of 4 and 5 reveal that the heterocyclic anions and imidazolium cations are linked by hydrogen bonds. In crystals of 4, the imidazolium cation and thiophenolate anion are linked by C10–H10···S1 = 2.492(10) Å, while in crystals of 5, the imidazolium cation and 4-pyridinethiolate anion are linked by C1–H1···N18 = 2.283(2) Å. In compound 4 the interionic hydrogen bond angle is C10–H10···S1 = 148.5(9)°, while in 5 the interionic hydrogen bond is close to linearity [C1–H1···N18 = 171.7(10)°]. The C–S bond length in the 4-pyridinethiolate ion [C(15)–S(14) = 1.723(2) Å] is shorter than the C–S bond length in thiophenolate ion [C(1)–S(1) = 1.749(3) Å].

A correlation between the H···X distance (X: O, N or S) and the electronegativity of X was observed. It has been found that H···X distance decreases with the increase in electronegativity of X. Also, there is a correlation between the H···X distance and the C–H···X angle. As H···X distance decreases, the C–H···X angle becomes closer to linear (Table 6).

3 Conclusions

Stable 2H-imidazolium salts (2, 3, 4 and 5) have been prepared and characterized through NMR spectroscopy, elemental analyses and single-crystal X-ray diffraction. The structure analyses of the prepared salts revealed that anions and cations are linked by strong hydrogen bonds. Correlation between the H···X distance and the electronegativity of X atoms has been observed. The H···O distance in 2 was shorter than H···N distance in 3 and 5 and the H···S distance in 4.

4 Experimental section

All reactions were performed in purified solvents under argon. 1,3-Diisopropyl-4,5-dimethyl-4,5-dimethylimidazol-2-ylidene (1) was obtained according to a published procedure [13].

4.1 C19H25N3O2 (2)

To a solution containing 1,3-diisopropyl-4,5-dimethyl-4,5-dimethylimidazol-2-ylidene (0.244 g, 1.35 mmol) in THF (30 mL), phthalimide (0.201 g, 1.35 mmol) was added at −50 °C. After stirring overnight at room temperature, the precipitate was filtered off, washed with Et2O and dried in vacuum. Yield: 0.294 g (67%). This solid was recrystallized from Acetone-Et2O as colorless crystals. – 1H NMR (CD2Cl2): δ = 1.51 (d, 12H, 1,3-CHMe 2, 3 J = 6.80 Hz), 2.12 (s, 6H, 4,5-Me), 4.38 (sept, 2H, 1,3-CHMe2), 7.30 (m, 2H, Ph), 7.35 (d, 2H, Ph), 10.23 (s, 1H, C2). – 13C{1H} NMR (CD2Cl2): δ = 8.77 (4,5-Me), 22.65 (1,3-CHMe 2), 51.29 (1,3-CHMe2), 120.01 (C2 ph) 126.11 (C3ph), 130.48 (C5ph), 134.01 (C4ph), 134.83(C6ph), 139.98 (C1ph), 167.8 (CO), 186.58 (CO), 123.85 (C2), 132.05 (C4,5). – Anal. Calcd. for C19H25N3O2 (327.42): C 69.70, H 7.70, N 12.83; found C 68.95, H 7.75, N 12.22%. – MS ((−)-FAB): m/z (%) = 145.9 (100) [C8H4NO2]+.

4.2 C19H26N4O2 (3)

To a solution containing 1,3-diisopropyl-4,5-dimethyl-4,5-dimethylimidazol-2-ylidene (0.244 g, 1.35 mmol) in THF (30 mL), quinazolinedione (0.220 g, 1.35 mmol) was added at −50 °C. After stirring overnight at room temperature, the precipitate was filtered off, washed with Et2O and dried in vacuum. Yield: 0.214 g (46%). This solid was recrystallized from Acetone-Et2O as colorless crystals. – 1H NMR (CD2Cl2): δ = 1.49 (d, 12H, 1,3-CHMe 2, 3 J = 6.70 Hz), 2.10 (s, 6H, 4,5-Me), 4.36 (sept, 2H, 1,3-CHMe2), 6.70,7.21 (m, 2H, Ph), 6.90, 7.76 (d, 2H, Ph), 10.22 (s, 1 H, C2). – 13C{1H} NMR (CD2Cl2): δ = 8.75 (4,5-Me), 22.60 (1,3-CHMe 2), 51.27 (1,3-CHMe2), 116.83 (C5ph), 118.42 (C3ph), 126.10 (C2ph), 126.68 (C4ph), 134.10 (C1ph), 152.34 (C6ph), 158.92 (CO), 168.03 (CO), 121.20 (C2), 132.80 (C4,5). – Anal. Calcd. for C19H26N4O2 (342.43): C 66.64, H 7.65, N 16.36; found C 65.88, H 7.73N 16.19%. – MS ((−)-FAB): m/z (%) = 160.9 (100) [C8H5N2O2]+.

4.3 C17H26N2S (4)

To a solution containing 1,3-diisopropyl-4,5-dimethyl-4,5-dimethylimidazol-2-ylidene (0.558 g, 3.10 mmol) in Et2O (30 mL), thiophenol (0.318 ml, 3.09 mmol) was added at −50 °C. After stirring overnight at room temperature, the white precipitate was filtered off, washed with Et2O and dried in vacuum. Yield: 0.808 g (90%). This solid was recrystallized from Acetone-Et2O as colorless crystals. – 1HNMR (CD3CN): δ = 1.51 (d, 12H, 1,3-CHMe 2, 3 J = 6.80 Hz), 2.23 (s, 6H, 4,5-Me), 4.51 (sept, 2H, 1,3-CHMe2), 6.71–7.16 (m, 5H, Ph), 9.52 (s, 1H, C2). – 13C{1H} NMR (CD3CN): δ = 7.36 (4,5-Me), 21.47 (1,3-CHMe 2), 49.95 (1,3-CHMe2), 126.10 (C17), 130.77 (C16,18), 133.03 (C15,19), 158.49 (C14–S20), 125.86 (C4,5 im), 116.30 (C2 im). – Anal. Calcd. for C17H26N2S (290.46): C 70.29, H 9.02, N 9.64, S 11.04; found C 69.75, H 8.55, N 9.52, S 10.54%. – MS ((−)-FAB): m/z (%) = 108.8 (65) [C6H5S]+.

4.4 C16H25N3S (5)

To a solution containing 1,3-diisopropyl-4,5-dimethyl-4,5-dimethylimidazol-2-ylidene (0.530 g, 2.94 mmol) in Et2O (30 mL), 4-pyridinethiole (0.327 g, 2.94 mmol) was added at −50 °C. After stirring overnight at room temperature, the yellow precipitate was filtered off, washed with Et2O and dried in vacuum. Yield: 0.527 g (62%). This solid was recrystallized from Acetone-Et2O as colorless crystals. – 1H NMR (CD3CN): δ = 1.49 (d, 12H, 1,3-CHMe 2, 3 J = 6.75 Hz), 2.22 (s, 6H, 4,5-Me), 4.49 (sept, 2H, 1,3-CHMe2), 7.05–7.64 (m, 4H, Pyridine), 8.79 (s, 1H, C2). – 13CNMR (CD3CN): δ = 7.32 (4,5Me), 21.45 (1,3-CHMe 2), 49.95 (1,3-CHMe2), 128.64 (C16,18), 145.03 (C15,19), 150.10 (C17–S20), 126.20 (C2 im), 129.56 (C4,5 im). – Anal. Calcd. for C16H25N3S (291.45): C 65.93, H 8.65, N 14.42, S 11.00 found C 65.41, H 8.00, N 14.37, S 11.30%. – MS ((−)-FAB): m/z (%) = 109.8(100) [C5H4NS].

CCDC 2098362 (3), 2098363 (2), 2098364 (4) and 2098365 (5) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.


Corresponding author: Ahmed Al-Sheikh, Faculty of Pharmacy and Medical Sciences, University of Petra, P. O. Box 961343, Amman 11196, Jordan, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Harding, S. E., Channell, G., Phillips-Jones, M. K. Biochem. Soc. Trans. 2018, 46, 1171–1182; https://doi.org/10.1042/bst20180158.Search in Google Scholar

2. Garcia, A. E., Sanbonmatsu, K. Y. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 2782–2787; https://doi.org/10.1073/pnas.042496899.Search in Google Scholar PubMed PubMed Central

3. Perczel, A., Gaspari, Z., Csizmadia, I. G. J. Comput. Chem. 2005, 26, 1155–1168; https://doi.org/10.1002/jcc.20255.Search in Google Scholar PubMed

4. Awad, R., Mallah, E., Sweidan, K., Al-Sheikh, A., Abu Dayyih, W., Steimann, M. J. Chem. Pharmaceut. Res. 2014, 6, 127–136.Search in Google Scholar

5. Abu Dayyih, W., Mallah, E., Sweidan, K., Al-Sheikh, A., Steimann, M. Z. Kristallogr. N. Cryst. Struct. 2013, 228, 55–56; https://doi.org/10.1524/ncrs.2013.0034.Search in Google Scholar

6. Abu-Salem, Q., Sweidan, K., Mallah, E., Joshi, R., Mubarak, M. S., Steinmann, M., Voelter, W. Jordan J. Chem. 2011, 6, 113–1121.Search in Google Scholar

7. Sweidan, K., Mallah, E., Abu-Salem, Q., Steimann, M., Maichle-Mössmer, C. Acta Crystallogr 2011, E67, o2205; https://doi.org/10.1107/s1600536811030236.Search in Google Scholar

8. Kuhn, N., Mallah, E., Maichle-Mössmer, C., Steimann, M. Z. Naturforsch. 2009, 64b, 835–839; https://doi.org/10.1515/znb-2009-0711.Search in Google Scholar

9. Abu-Rayyan, A., Abu-Salem, Q., Mallah, E., Michle-Mössmer, C., Steimann, M., Kuhn, N., Zeller, K. P. Z. Naturforsch. 2008, 63b, 1438–1440; https://doi.org/10.1515/znb-2008-1216.Search in Google Scholar

10. Abu-Rayyan, A., Abu-Salem, Q., Kuhn, N., Maichle-Mössmer, C., Mallah, E., Steimann, M. Z. Naturforsch. 2008, 63b, 1015–1019; https://doi.org/10.1515/znb-2008-0816.Search in Google Scholar

11. Kuhn, N., Eichele, K., Steinmann, M., Al-Sheikh, A. Z. Anorg. Allg. Chem. 2006, 632, 2268–2275; https://doi.org/10.1002/zaac.200600157.Search in Google Scholar

12. Kuhn, N., Al-Sheikh, A., Steimann, M. Z. Naturforsch. 2002, 57b, 1195–1198; https://doi.org/10.1515/znb-2002-1102.Search in Google Scholar

13. Kuhn, N., Kratz, T. Synthesis 1993, 1993, 561–562; https://doi.org/10.1055/s-1993-25902.Search in Google Scholar

Received: 2021-08-01
Accepted: 2021-11-06
Published Online: 2021-11-26
Published in Print: 2022-01-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2021-0132/html
Scroll to top button