Abstract
A new binary CoII coordination polymer, [Co(2-cpa)2(H2O)]n (1) has been synthesized by a hydrothermal reaction of cobalt(II) acetate tetrahydrate and 2-carboxy-phenoxyacetic acid (2-H2cpa) in the presence of potassium hydroxide. Structural analysis revealed that the central CoII ion is in an octahedral geometry coordinated with one aqua and five oxygen atoms of three 2-carboxy-phenoxyacetate (2-cpa) ligands. The 2-cpa anions function as pentadentate double bridging chelate-μ3 linkers binding neighboring CoII ions together, to form an unusual corrugated (4,4)-connected layer. Variable-temperature magnetic susceptibility data in the 2–300 K temperature range indicates a weak antiferromagnetic coupling between adjacent cobalt(II) ions.
Funding source: Key scientific research projects in Colleges and Universities of Henan province
Award Identifier / Grant number: 17A150040
Funding source: Foundation for Science and Technology Innovation Talents in Henan province
Award Identifier / Grant number: 164100510012
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: 21671114
Award Identifier / Grant number: U1804131
Funding source: Tackle Key Problem of Science and Technology Project of Henan Province, China
Award Identifier / Grant number: 182102310897
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: This work was supported by the Key scientific research projects in Colleges and Universities of Henan province (No. 17A150040), the Foundation for Science and Technology Innovation Talents in Henan province (No. 164100510012), Natural Science Foundation of China (Nos. 21671114 and U1804131) as well as the Tackle Key Problem of Science and Technology Project of Henan Province, China (No. 182102310897).
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Lin, Z.-J., Lv, J., Hong, M., Cao, R. Chem. Soc. Rev. 2014, 43, 5867. https://doi.org/10.1039/c3cs60483g.Search in Google Scholar PubMed
2. Feng, X., Feng, Y.-Q., Liu, L., Wang, L.-Y., Song, H.-L., Ng, S.-W. Dalton Trans. 2013, 42, 7741. https://doi.org/10.1039/c3dt33002h.Search in Google Scholar PubMed
3. Liu, L., Xu, C.-Y., Li, Y., Wang, J.-C., Zhang, Y.-P., Wang, J.-J. Chin. J. Inorg. Chem. 2017, 33, 1817.10.1007/s40242-017-6416-3Search in Google Scholar
4. Li, Z.-H., He, S.-J., Xue, L.-P., Wang, X.-N., Zhang, D.-D., Zhao, B.-T. Dyes Pigm. 2018, 149, 498. https://doi.org/10.1016/j.dyepig.2017.10.036.Search in Google Scholar
5. Lan, H.-H., Li, X.-T., Chu, W.-J., Xu, C.-Y., Ji, B.-M. Chin. J. Inorg. Chem. 2019, 35, 1896.Search in Google Scholar
6. Qin, J. H., Ma, L. F., Hu, Y., Wang, L. Y. CrystEngComm 2012, 14, 2891. https://doi.org/10.1039/c2ce06581a.Search in Google Scholar
7. Zhang, T., Xue, L. P. Chin. J. Struct. Chem. 2015, 34, 417.Search in Google Scholar
8. Wang, J. G., Chai, N., Wang, S. C., Ma, L. F., Wang, L. Y. Inorg. Chem. Commun. 2013, 30, 143.10.1016/j.inoche.2013.02.005Search in Google Scholar
9. Ma, L. F., Zhao, J. W., Han, M. L., Wang, L. Y., Du, M. Dalton Trans. 2012, 41, 2078. https://doi.org/10.1039/c1dt11206f.Search in Google Scholar PubMed
10. Xin, L. Y., Liu, G. Z., Li, X. L., Wang, L. Y. Cryst. Growth Des. 2012, 12, 147.10.1021/cg200903kSearch in Google Scholar
11. Deng, D. S., Liu, L. L., Ji, B. M., Yin, G. J., Du, C. X. Cryst. Growth Des. 2012, 12, 5338. https://doi.org/10.1021/cg300900m.Search in Google Scholar
12. Li, J.-X., Du, Z.-X., Zhu, B.-L., An, H.-Q., Dong, J.-X., Hu, X.-J., Huang, W.-P. Inorg. Chem. Commun. 2011, 14, 522.10.1016/j.inoche.2011.01.012Search in Google Scholar
13. Li, J.-X., Du, Z.-X., Huang, W.-P. Z. Naturforsch. 2011, 66b, 1029. https://doi.org/10.5560/znb.2011.66b1029.Search in Google Scholar
14. Li, J.-X., Guo, W.-B., Du, Z.-X., Huang, W.-P. Inorg. Chim. Acta 2011, 375, 290.10.1016/j.ica.2011.05.018Search in Google Scholar
15. Igoa, F., Martínez, S., Zanoni, K. P. S., Castiglioni, J., Suescun, L., González-Platas, J., de Camargo, A. S. S. CrystEngComm 2018, 20, 4942. https://doi.org/10.1039/c8ce01074a.Search in Google Scholar
16. Piotrowska-Kirschling, A., Drzezdzon, J., Kloska, A., Wyrzykowski, D., Chmurzynski, L., Jacewicz, D. Biol. Trace Elem. Res. 2018, 185, 244. https://doi.org/10.1007/s12011-018-1243-z.Search in Google Scholar PubMed
17. Li, J.-X., Du, Z.-X. J. Clust. Sci. 2020, 31, 507.10.1007/s10876-019-01666-wSearch in Google Scholar
18. Li, J.-X., Du, Z.-X., Wang, J., Feng, X. Z. Naturforsch. 2019, 74b, 839.10.1515/znb-2019-0147Search in Google Scholar
19. Du, Z.-X., Li, J.-X., Bai, R.-F. Z. Kristallogr. NCS 2020, 235, 15.Search in Google Scholar
20. Du, Z.-X., Li, J.-X., Bai, R.-F. Z. Kristallogr. NCS 2020, 235, 55.Search in Google Scholar
21. Du, Z.-X., Li, J.-X. Z. Kristallogr. NCS 2020; https://doi.org/10.1515/ncrs-2020-0075.Search in Google Scholar
22. Li, J.-X., Du, Z.-X. Z. Kristallogr. NCS 2020; https://doi.org/10.1515/ncrs-2020-0083.Search in Google Scholar
23. Li, J.-X., Du, Z.-X., Pan, Q.-Y., Zhang, L.-L., Liu, D.-L. Inorg. Chim. Acta 2020, 509, 119677.10.1016/j.ica.2020.119677Search in Google Scholar
24. Chen, Z., Gao, D.-L., Diao, C.-H., Liu, Y., Ren, J., Chen, J., Zhao, B., Shi, W., Cheng, P. Cryst. Growth Des. 2012, 12, 1201. https://doi.org/10.1021/cg201197k.Search in Google Scholar
25. Li, C., Li, D.-S., Zhao, J., Mou, Y.-Q., Zou, K., Xiao, S.-Z., Du, M. CrystEngComm 2011, 13, 6601. https://doi.org/10.1039/c1ce05896g.Search in Google Scholar
26. Li, J.-X., Du, Z.-X. J. Coord. Chem. 2016, 69, 2563.10.1080/00958972.2016.1216106Search in Google Scholar
27. Li, J.-X., Du, Z.-X. Z. Naturforsch. 2015, 70b, 505.10.1515/znb-2015-0010Search in Google Scholar
28. Gerresheim, W., Stam, C. H. Cryst. Struct. Commun. 1982, 11, 1647.Search in Google Scholar
29. Yonemura, T., Shibuya, K., Ama, T., Kawaguchi, H., Okamoto, K.-i., Hidaka, J., Yasui, T. Inorg. Chem. 1999, 38, 3244. https://doi.org/10.1021/ic981391+.10.1021/ic981391+Search in Google Scholar
30. Du, Z.-X., Zhang, G.-Y. Z. Kristallogr. NCS 2011, 226, 33.Search in Google Scholar
31. Yin, W.-D., Li, G.-L., Xin, L.-Y., Li, X.-L., Ma, L.-F., Liu, G.-Z. Chin. J. Struct. Chem. 2017, 36, 1502.Search in Google Scholar
32. Burrows, A. D., Harrington, R. W., Mahon, M. F., Price, C. E. J. Chem. Soc. Dalton Trans. 2000, 3845; https://doi.org/10.1039/b003210g.Search in Google Scholar
33. Li, J.-X., Du, Z.-X. Z. Kristallogr. NCS 2015, 230, 339.Search in Google Scholar
34. Du, Z.-X., Li, J.-X. Z. Kristallogr. NCS 2015, 230, 321.Search in Google Scholar
35. Liang, Y., Shi, X.-P. Appl. Chem. Indus. 2001, 30, 31.Search in Google Scholar
36. CrysAlis Pro, Software System Intelligent Data Collection and Processing Software for Small Molecule and Protein Crystallography; Rigaku Oxford Diffraction: Yarnton, Oxfordshire (U. K.), 2016.Search in Google Scholar
37. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339. https://doi.org/10.1107/s0021889808042726.Search in Google Scholar
38. Sheldrick, G. M. Acta Crystallogr. 2015, A71, 3.10.1107/S2053273314026370Search in Google Scholar
39. Sheldrick, G. M. Acta Crystallogr. 2015, C71, 3.Search in Google Scholar
40. Tang, L., Wang, H.-H., Fu, Y.-H., Wang, Y.-T., Wang, J.-J., Hou, X.-Y. RSC Adv. 2019, 9, 38902. https://doi.org/10.1039/c9ra07737e.Search in Google Scholar PubMed PubMed Central
41. Kang, H.-X., Fu, Y.-Q., Ju, F.-Y., Wang, Y.-F., Li, X.-L., Liu, G.-Z. Chin. J. Struct. Chem. 2019, 38, 1266.Search in Google Scholar
42. Miao, S.-B., Wang, Y.-F., Deng, D.-S., Xu, C.-Y., Li, Z.-H., Ji, B.-M. Chin. J. Struct. Chem. 2018, 37, 1102.Search in Google Scholar
43. Feng, X., Chen, J. L., Bai, R. F., Wang, L. Y., Wei, J. T., Chen, X. X. Inorg. Chem. Commun. 2016, 66, 41.10.1016/j.inoche.2016.01.002Search in Google Scholar
44. Ju, F. Y., Li, Y. P., Li, G. L., Liu, G. Z. Chin. J. Struct. Chem. 2016, 35, 404.10.1002/jccs.201500525Search in Google Scholar
45. Li, R. F., Wang, Y. F., Liu, X. F., Feng, X., Zhang, X. Y., Du, D. G. Chin. J. Struct. Chem. 2015, 34, 1558.Search in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this issue
- Research articles
- Derivatives of the triaminoguanidinium ion, 7: unsymmetrically substituted N,N',N''-triaminoguanidinium salts via a cyclopentanone spiroaminal intermediate
- Diethyl (iodoethynyl)phosphonate and (iodoethynyl)diphenylphosphane oxide: crystal structures and some cycloaddition reactions
- Synthesis, molecular structure and BSA-binding properties of a new binuclear Cd(II) complex based on 2-(1H-tetrazol-1-methyl)-1H-imidazole-4,5-dicarboxylic acid
- Microwave synthesis of a blue luminescent silver(I) coordination polymer with a rigid tris-triazole ligand
- Single-crystal structure determination of LaNi5–xInx and LaNi9–xIn2+x
- The reaction of imidazo[1,5-a]pyridines with ninhydrin revisited
- The syntheses, structures, and magnetic properties of two mononuclear manganese(II) complexes involving in situ hydrothermal decarboxylation
- A cobalt(II) coordination polymer constructed with the 2-carboxy-phenoxyacetate linker showing a corrugated layer structure: synthesis, structure analysis and magnetic properties
- Hexaniobate anions connected by [Ni(cyclam)]2+ complexes yield two interpenetrating three-dimensional networks
- High-pressure synthesis and crystal structure of the samarium meta-oxoborate γ-Sm(BO2)3
- High-pressure synthesis and characterization of the non-centrosymmetric scandium borate ScB6O9(OH)3
- Al5B12O25(OH) and Ga4InB12O25(OH) – two additional triel borates with the structure type M5B12O25(OH) (M = Ga, In)
- Al/N-based active Lewis pairs: isocyanate insertion products as efficient nucleophiles employed for the facile generation of highly functional molecules
- New compounds of the Li2MSn3S8 type
- Synthesis and magnetic properties of the extended RE4Pd9Al24 series (RE = Sc, Y, Ce–Nd, Sm, Gd–Lu)
- Solid solutions EuAu4Cd2−xMgx with a remarkably stable ferromagnetic ground state
- Mechanistic investigations on C–H activated dealkylating cyclo-amination reactions of substituted triazenes, formamidines and amidines
- Orthoamide und Iminiumsalze, IIC. Darstellung von N-(ω-Ammonioalkyl)-N,N′,N′,N″,N″-peralkylierten Guanidiniumsalzen und N-(ω-Aminoalkyl)-N′,N′,N″,N″-tetramethylguanidinen
- Orthoamide und Iminiumsalze, IC. Synthese und Reaktionen von N,N,N′,N′,N′′-Pentaalkyl-N′′-[2-(N,N,N′,N′,N′′-pentaalkylguanidinio)ethyl]-guanidiniumsalzen
- Orthoamide und Iminiumsalze, C. Vinyloge Guanidiniumsalz-basierte ionische Flüssigkeiten sowie phenyloge Guanidiniumsalze und Orthoamide
- Notes
- La5Ir1.73In4.27 with Lu5Ni2In4-type structure
- The scandium-rich indide Sc50Pt13.47In2.53
Articles in the same Issue
- Frontmatter
- In this issue
- Research articles
- Derivatives of the triaminoguanidinium ion, 7: unsymmetrically substituted N,N',N''-triaminoguanidinium salts via a cyclopentanone spiroaminal intermediate
- Diethyl (iodoethynyl)phosphonate and (iodoethynyl)diphenylphosphane oxide: crystal structures and some cycloaddition reactions
- Synthesis, molecular structure and BSA-binding properties of a new binuclear Cd(II) complex based on 2-(1H-tetrazol-1-methyl)-1H-imidazole-4,5-dicarboxylic acid
- Microwave synthesis of a blue luminescent silver(I) coordination polymer with a rigid tris-triazole ligand
- Single-crystal structure determination of LaNi5–xInx and LaNi9–xIn2+x
- The reaction of imidazo[1,5-a]pyridines with ninhydrin revisited
- The syntheses, structures, and magnetic properties of two mononuclear manganese(II) complexes involving in situ hydrothermal decarboxylation
- A cobalt(II) coordination polymer constructed with the 2-carboxy-phenoxyacetate linker showing a corrugated layer structure: synthesis, structure analysis and magnetic properties
- Hexaniobate anions connected by [Ni(cyclam)]2+ complexes yield two interpenetrating three-dimensional networks
- High-pressure synthesis and crystal structure of the samarium meta-oxoborate γ-Sm(BO2)3
- High-pressure synthesis and characterization of the non-centrosymmetric scandium borate ScB6O9(OH)3
- Al5B12O25(OH) and Ga4InB12O25(OH) – two additional triel borates with the structure type M5B12O25(OH) (M = Ga, In)
- Al/N-based active Lewis pairs: isocyanate insertion products as efficient nucleophiles employed for the facile generation of highly functional molecules
- New compounds of the Li2MSn3S8 type
- Synthesis and magnetic properties of the extended RE4Pd9Al24 series (RE = Sc, Y, Ce–Nd, Sm, Gd–Lu)
- Solid solutions EuAu4Cd2−xMgx with a remarkably stable ferromagnetic ground state
- Mechanistic investigations on C–H activated dealkylating cyclo-amination reactions of substituted triazenes, formamidines and amidines
- Orthoamide und Iminiumsalze, IIC. Darstellung von N-(ω-Ammonioalkyl)-N,N′,N′,N″,N″-peralkylierten Guanidiniumsalzen und N-(ω-Aminoalkyl)-N′,N′,N″,N″-tetramethylguanidinen
- Orthoamide und Iminiumsalze, IC. Synthese und Reaktionen von N,N,N′,N′,N′′-Pentaalkyl-N′′-[2-(N,N,N′,N′,N′′-pentaalkylguanidinio)ethyl]-guanidiniumsalzen
- Orthoamide und Iminiumsalze, C. Vinyloge Guanidiniumsalz-basierte ionische Flüssigkeiten sowie phenyloge Guanidiniumsalze und Orthoamide
- Notes
- La5Ir1.73In4.27 with Lu5Ni2In4-type structure
- The scandium-rich indide Sc50Pt13.47In2.53