Home A cobalt(II) coordination polymer constructed with the 2-carboxy-phenoxyacetate linker showing a corrugated layer structure: synthesis, structure analysis and magnetic properties
Article
Licensed
Unlicensed Requires Authentication

A cobalt(II) coordination polymer constructed with the 2-carboxy-phenoxyacetate linker showing a corrugated layer structure: synthesis, structure analysis and magnetic properties

  • Zhong-Xiang Du and Jun-Xia Li EMAIL logo
Published/Copyright: July 3, 2020
Become an author with De Gruyter Brill

Abstract

A new binary CoII coordination polymer, [Co(2-cpa)2(H2O)]n (1) has been synthesized by a hydrothermal reaction of cobalt(II) acetate tetrahydrate and 2-carboxy-phenoxyacetic acid (2-H2cpa) in the presence of potassium hydroxide. Structural analysis revealed that the central CoII ion is in an octahedral geometry coordinated with one aqua and five oxygen atoms of three 2-carboxy-phenoxyacetate (2-cpa) ligands. The 2-cpa anions function as pentadentate double bridging chelate-μ3 linkers binding neighboring CoII ions together, to form an unusual corrugated (4,4)-connected layer. Variable-temperature magnetic susceptibility data in the 2–300 K temperature range indicates a weak antiferromagnetic coupling between adjacent cobalt(II) ions.


Corresponding author: Jun-Xia Li, Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, Henan Province, 471934, PR China, E-mail:

Funding source: Key scientific research projects in Colleges and Universities of Henan province

Award Identifier / Grant number: 17A150040

Funding source: Foundation for Science and Technology Innovation Talents in Henan province

Award Identifier / Grant number: 164100510012

Award Identifier / Grant number: 21671114

Award Identifier / Grant number: U1804131

Funding source: Tackle Key Problem of Science and Technology Project of Henan Province, China

Award Identifier / Grant number: 182102310897

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the Key scientific research projects in Colleges and Universities of Henan province (No. 17A150040), the Foundation for Science and Technology Innovation Talents in Henan province (No. 164100510012), Natural Science Foundation of China (Nos. 21671114 and U1804131) as well as the Tackle Key Problem of Science and Technology Project of Henan Province, China (No. 182102310897).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Lin, Z.-J., Lv, J., Hong, M., Cao, R. Chem. Soc. Rev. 2014, 43, 5867. https://doi.org/10.1039/c3cs60483g.Search in Google Scholar PubMed

2. Feng, X., Feng, Y.-Q., Liu, L., Wang, L.-Y., Song, H.-L., Ng, S.-W. Dalton Trans. 2013, 42, 7741. https://doi.org/10.1039/c3dt33002h.Search in Google Scholar PubMed

3. Liu, L., Xu, C.-Y., Li, Y., Wang, J.-C., Zhang, Y.-P., Wang, J.-J. Chin. J. Inorg. Chem. 2017, 33, 1817.10.1007/s40242-017-6416-3Search in Google Scholar

4. Li, Z.-H., He, S.-J., Xue, L.-P., Wang, X.-N., Zhang, D.-D., Zhao, B.-T. Dyes Pigm. 2018, 149, 498. https://doi.org/10.1016/j.dyepig.2017.10.036.Search in Google Scholar

5. Lan, H.-H., Li, X.-T., Chu, W.-J., Xu, C.-Y., Ji, B.-M. Chin. J. Inorg. Chem. 2019, 35, 1896.Search in Google Scholar

6. Qin, J. H., Ma, L. F., Hu, Y., Wang, L. Y. CrystEngComm 2012, 14, 2891. https://doi.org/10.1039/c2ce06581a.Search in Google Scholar

7. Zhang, T., Xue, L. P. Chin. J. Struct. Chem. 2015, 34, 417.Search in Google Scholar

8. Wang, J. G., Chai, N., Wang, S. C., Ma, L. F., Wang, L. Y. Inorg. Chem. Commun. 2013, 30, 143.10.1016/j.inoche.2013.02.005Search in Google Scholar

9. Ma, L. F., Zhao, J. W., Han, M. L., Wang, L. Y., Du, M. Dalton Trans. 2012, 41, 2078. https://doi.org/10.1039/c1dt11206f.Search in Google Scholar PubMed

10. Xin, L. Y., Liu, G. Z., Li, X. L., Wang, L. Y. Cryst. Growth Des. 2012, 12, 147.10.1021/cg200903kSearch in Google Scholar

11. Deng, D. S., Liu, L. L., Ji, B. M., Yin, G. J., Du, C. X. Cryst. Growth Des. 2012, 12, 5338. https://doi.org/10.1021/cg300900m.Search in Google Scholar

12. Li, J.-X., Du, Z.-X., Zhu, B.-L., An, H.-Q., Dong, J.-X., Hu, X.-J., Huang, W.-P. Inorg. Chem. Commun. 2011, 14, 522.10.1016/j.inoche.2011.01.012Search in Google Scholar

13. Li, J.-X., Du, Z.-X., Huang, W.-P. Z. Naturforsch. 2011, 66b, 1029. https://doi.org/10.5560/znb.2011.66b1029.Search in Google Scholar

14. Li, J.-X., Guo, W.-B., Du, Z.-X., Huang, W.-P. Inorg. Chim. Acta 2011, 375, 290.10.1016/j.ica.2011.05.018Search in Google Scholar

15. Igoa, F., Martínez, S., Zanoni, K. P. S., Castiglioni, J., Suescun, L., González-Platas, J., de Camargo, A. S. S. CrystEngComm 2018, 20, 4942. https://doi.org/10.1039/c8ce01074a.Search in Google Scholar

16. Piotrowska-Kirschling, A., Drzezdzon, J., Kloska, A., Wyrzykowski, D., Chmurzynski, L., Jacewicz, D. Biol. Trace Elem. Res. 2018, 185, 244. https://doi.org/10.1007/s12011-018-1243-z.Search in Google Scholar PubMed

17. Li, J.-X., Du, Z.-X. J. Clust. Sci. 2020, 31, 507.10.1007/s10876-019-01666-wSearch in Google Scholar

18. Li, J.-X., Du, Z.-X., Wang, J., Feng, X. Z. Naturforsch. 2019, 74b, 839.10.1515/znb-2019-0147Search in Google Scholar

19. Du, Z.-X., Li, J.-X., Bai, R.-F. Z. Kristallogr. NCS 2020, 235, 15.Search in Google Scholar

20. Du, Z.-X., Li, J.-X., Bai, R.-F. Z. Kristallogr. NCS 2020, 235, 55.Search in Google Scholar

21. Du, Z.-X., Li, J.-X. Z. Kristallogr. NCS 2020; https://doi.org/10.1515/ncrs-2020-0075.Search in Google Scholar

22. Li, J.-X., Du, Z.-X. Z. Kristallogr. NCS 2020; https://doi.org/10.1515/ncrs-2020-0083.Search in Google Scholar

23. Li, J.-X., Du, Z.-X., Pan, Q.-Y., Zhang, L.-L., Liu, D.-L. Inorg. Chim. Acta 2020, 509, 119677.10.1016/j.ica.2020.119677Search in Google Scholar

24. Chen, Z., Gao, D.-L., Diao, C.-H., Liu, Y., Ren, J., Chen, J., Zhao, B., Shi, W., Cheng, P. Cryst. Growth Des. 2012, 12, 1201. https://doi.org/10.1021/cg201197k.Search in Google Scholar

25. Li, C., Li, D.-S., Zhao, J., Mou, Y.-Q., Zou, K., Xiao, S.-Z., Du, M. CrystEngComm 2011, 13, 6601. https://doi.org/10.1039/c1ce05896g.Search in Google Scholar

26. Li, J.-X., Du, Z.-X. J. Coord. Chem. 2016, 69, 2563.10.1080/00958972.2016.1216106Search in Google Scholar

27. Li, J.-X., Du, Z.-X. Z. Naturforsch. 2015, 70b, 505.10.1515/znb-2015-0010Search in Google Scholar

28. Gerresheim, W., Stam, C. H. Cryst. Struct. Commun. 1982, 11, 1647.Search in Google Scholar

29. Yonemura, T., Shibuya, K., Ama, T., Kawaguchi, H., Okamoto, K.-i., Hidaka, J., Yasui, T. Inorg. Chem. 1999, 38, 3244. https://doi.org/10.1021/ic981391+.10.1021/ic981391+Search in Google Scholar

30. Du, Z.-X., Zhang, G.-Y. Z. Kristallogr. NCS 2011, 226, 33.Search in Google Scholar

31. Yin, W.-D., Li, G.-L., Xin, L.-Y., Li, X.-L., Ma, L.-F., Liu, G.-Z. Chin. J. Struct. Chem. 2017, 36, 1502.Search in Google Scholar

32. Burrows, A. D., Harrington, R. W., Mahon, M. F., Price, C. E. J. Chem. Soc. Dalton Trans. 2000, 3845; https://doi.org/10.1039/b003210g.Search in Google Scholar

33. Li, J.-X., Du, Z.-X. Z. Kristallogr. NCS 2015, 230, 339.Search in Google Scholar

34. Du, Z.-X., Li, J.-X. Z. Kristallogr. NCS 2015, 230, 321.Search in Google Scholar

35. Liang, Y., Shi, X.-P. Appl. Chem. Indus. 2001, 30, 31.Search in Google Scholar

36. CrysAlis Pro, Software System Intelligent Data Collection and Processing Software for Small Molecule and Protein Crystallography; Rigaku Oxford Diffraction: Yarnton, Oxfordshire (U. K.), 2016.Search in Google Scholar

37. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339. https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

38. Sheldrick, G. M. Acta Crystallogr. 2015, A71, 3.10.1107/S2053273314026370Search in Google Scholar

39. Sheldrick, G. M. Acta Crystallogr. 2015, C71, 3.Search in Google Scholar

40. Tang, L., Wang, H.-H., Fu, Y.-H., Wang, Y.-T., Wang, J.-J., Hou, X.-Y. RSC Adv. 2019, 9, 38902. https://doi.org/10.1039/c9ra07737e.Search in Google Scholar PubMed PubMed Central

41. Kang, H.-X., Fu, Y.-Q., Ju, F.-Y., Wang, Y.-F., Li, X.-L., Liu, G.-Z. Chin. J. Struct. Chem. 2019, 38, 1266.Search in Google Scholar

42. Miao, S.-B., Wang, Y.-F., Deng, D.-S., Xu, C.-Y., Li, Z.-H., Ji, B.-M. Chin. J. Struct. Chem. 2018, 37, 1102.Search in Google Scholar

43. Feng, X., Chen, J. L., Bai, R. F., Wang, L. Y., Wei, J. T., Chen, X. X. Inorg. Chem. Commun. 2016, 66, 41.10.1016/j.inoche.2016.01.002Search in Google Scholar

44. Ju, F. Y., Li, Y. P., Li, G. L., Liu, G. Z. Chin. J. Struct. Chem. 2016, 35, 404.10.1002/jccs.201500525Search in Google Scholar

45. Li, R. F., Wang, Y. F., Liu, X. F., Feng, X., Zhang, X. Y., Du, D. G. Chin. J. Struct. Chem. 2015, 34, 1558.Search in Google Scholar

Received: 2020-02-22
Accepted: 2020-05-02
Published Online: 2020-07-03
Published in Print: 2020-08-27

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. In this issue
  3. Research articles
  4. Derivatives of the triaminoguanidinium ion, 7: unsymmetrically substituted N,N',N''-triaminoguanidinium salts via a cyclopentanone spiroaminal intermediate
  5. Diethyl (iodoethynyl)phosphonate and (iodoethynyl)diphenylphosphane oxide: crystal structures and some cycloaddition reactions
  6. Synthesis, molecular structure and BSA-binding properties of a new binuclear Cd(II) complex based on 2-(1H-tetrazol-1-methyl)-1H-imidazole-4,5-dicarboxylic acid
  7. Microwave synthesis of a blue luminescent silver(I) coordination polymer with a rigid tris-triazole ligand
  8. Single-crystal structure determination of LaNi5–xInx and LaNi9–xIn2+x
  9. The reaction of imidazo[1,5-a]pyridines with ninhydrin revisited
  10. The syntheses, structures, and magnetic properties of two mononuclear manganese(II) complexes involving in situ hydrothermal decarboxylation
  11. A cobalt(II) coordination polymer constructed with the 2-carboxy-phenoxyacetate linker showing a corrugated layer structure: synthesis, structure analysis and magnetic properties
  12. Hexaniobate anions connected by [Ni(cyclam)]2+ complexes yield two interpenetrating three-dimensional networks
  13. High-pressure synthesis and crystal structure of the samarium meta-oxoborate γ-Sm(BO2)3
  14. High-pressure synthesis and characterization of the non-centrosymmetric scandium borate ScB6O9(OH)3
  15. Al5B12O25(OH) and Ga4InB12O25(OH) – two additional triel borates with the structure type M5B12O25(OH) (M = Ga, In)
  16. Al/N-based active Lewis pairs: isocyanate insertion products as efficient nucleophiles employed for the facile generation of highly functional molecules
  17. New compounds of the Li2MSn3S8 type
  18. Synthesis and magnetic properties of the extended RE4Pd9Al24 series (RE = Sc, Y, Ce–Nd, Sm, Gd–Lu)
  19. Solid solutions EuAu4Cd2−xMgx with a remarkably stable ferromagnetic ground state
  20. Mechanistic investigations on C–H activated dealkylating cyclo-amination reactions of substituted triazenes, formamidines and amidines
  21. Orthoamide und Iminiumsalze, IIC. Darstellung von N-(ω-Ammonioalkyl)-N,N′,N′,N″,N″-peralkylierten Guanidiniumsalzen und N-(ω-Aminoalkyl)-N′,N′,N″,N″-tetramethylguanidinen
  22. Orthoamide und Iminiumsalze, IC. Synthese und Reaktionen von N,N,N′,N′,N′′-Pentaalkyl-N′′-[2-(N,N,N′,N′,N′′-pentaalkylguanidinio)ethyl]-guanidiniumsalzen
  23. Orthoamide und Iminiumsalze, C. Vinyloge Guanidiniumsalz-basierte ionische Flüssigkeiten sowie phenyloge Guanidiniumsalze und Orthoamide
  24. Notes
  25. La5Ir1.73In4.27 with Lu5Ni2In4-type structure
  26. The scandium-rich indide Sc50Pt13.47In2.53
Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2020-0042/html?lang=en
Scroll to top button