Abstract
We present the reaction of a tris(pyrazolyl) beryllium scorpionate (TpBe) complex with a weakly coordinating anion (WCA), which yields the heteroleptic complex TpBeOC(CF3)3 1 (TpBeORF). The product 1 has been characterized by multinuclear NMR spectroscopy (1H, 9Be, 13C) and single-crystal X-ray diffraction (scXRD). Quantum chemical calculations (DFT, NPA, LOL) were performed to study the bonding nature in 1.
Acknowledgment
Financial support by the University of Duisburg-Essen is acknowledged.
References
[1] J. Steinbauer, A. Spannenberg, T. Werner, Green Chem. 2017, 19, 3769–3779.10.1039/C7GC01114HSearch in Google Scholar
[2] L. S. Fitts, E. J. Bierschenk, T. P. Hanusa, A. L. Rheingold, M. Pink, V. G. Young, New J. Chem. 2016, 40, 8229–8238.10.1039/C6NJ01713DSearch in Google Scholar
[3] K. M. Fromm, W. Maudez, Eur. J. Inorg. Chem. 2003, 18, 3440–3444.10.1002/ejic.200300241Search in Google Scholar
[4] C. Lichtenberg, P. Jochmann, T. P. Spaniol, J. Okuda, Angew. Chem. Int. Ed. 2011, 50, 5753–5756.10.1002/anie.201100073Search in Google Scholar PubMed
[5] K. C. Jayaratne, L. S. Fitts, T. P. Hanusa, V. G. Young, Organometallics 2001, 20, 3638–3640.10.1021/om010399fSearch in Google Scholar
[6] A. Koch, S. Krieck, H. Görls, M. Westerhausen, Organometallics 2017, 36, 994–1000.10.1021/acs.organomet.6b00914Search in Google Scholar
[7] J. Langer, M. Köhler, J. Hildebrand, R. Fischer, H. Görls, M. Westerhausen, Angew. Chem. Int. Ed. 2013, 52, 3507–3510.10.1002/anie.201209897Search in Google Scholar PubMed
[8] A. Friedrich, J. Pahl, H. Elsen, S. Harder, Dalton Trans. 2019, 48, 5560–5568.10.1039/C8DT03576HSearch in Google Scholar PubMed
[9] S. Brand, J. Pahl, H. Elsen, S. Harder, Eur. J. Inorg. Chem. 2017, 4187–4195.10.1002/ejic.201700787Search in Google Scholar
[10] J. Pahl, A. Friedrich, H. Elsen, S. Harder, Organometallics 2018, 37, 2901–2909.10.1021/acs.organomet.8b00489Search in Google Scholar
[11] J. Pahl, S. Brand, H. Elsen, S. Harder, Chem. Commun. 2018, 54, 8685–8688.10.1039/C8CC04083DSearch in Google Scholar
[12] J. Bruyere, C. Gourlaouen, L. Karmazin, C. Bailly, C. Boudon, L. Ruhlmann, P. de Frémont, S. Dagorne, Organometallics 2019, 38, 2748–2757.10.1021/acs.organomet.9b00304Search in Google Scholar
[13] K. C. Jayaratne, L S. Fitts, T. P Hanusa, V. G. Young Jr., Organometallics 2001, 20, 3638–3640.10.1021/om010399fSearch in Google Scholar
[14] S. Brand, H. Elsen, J. Langer, W. A. Donaubauer, F. Hampel, S. Harder, Angew. Chem. Int. Ed. 2018, 57, 14169–14173.10.1002/anie.201809236Search in Google Scholar PubMed
[15] S. Brand, H. Elsen, J. Langer, W. A. Donaubauer, F. Hampel, S. Harder, Angew. Chem. Int. Ed. 2019, 43, 15496–15503.10.1002/anie.201908978Search in Google Scholar PubMed PubMed Central
[16] C. E. Radzewich, M. P. Coles, R. F. Jordan, J. Am. Chem. Soc. 1998, 120, 9384–9385.10.1021/ja9818405Search in Google Scholar
[17] T. E. Stennett, J. Pahl, H. S. Zijlstra, F. W. Seidel, S. Harder, Organometallics 2016, 35, 207–217.10.1021/acs.organomet.5b00927Search in Google Scholar
[18] S. Schmidt, S. Schulz, D. Bläser, R. Boese, M. Bolte, Organometallics 2010, 29, 6097–6103.10.1021/om1008549Search in Google Scholar
[19] C. Scheiper, S. Schulz, C. Wölper, D. Bläser, J. Roll, Z. Anorg. Allg. Chem. 2013, 639, 1153–1159.10.1002/zaac.201300119Search in Google Scholar
[20] S. Schulz, D. Schuchmann, I. Krossing, D. Himmel, D. Bläser, R. Boese, Angew. Chem. Int. Ed. 2009, 48, 5748–5751.10.1002/anie.200902202Search in Google Scholar PubMed
[21] H. De Bari, M. Zimmer, Inorg. Chem. 2004, 43, 3344–3348.10.1021/ic0498992Search in Google Scholar PubMed
[22] C. Pettinari, R. Pettinari, F. Marchetti, Adv. Organomet. Chem. 2016, 65, 175–260.10.1016/bs.adomc.2016.01.002Search in Google Scholar
[23] M. Arrowsmith, H. Braunschweig, M. A. Celik, T. Dellermann, R. D. Dewhurst, W. C. Ewing, K. Hammond, T. Kramer, I. Krummenacher, J. Mies, K. Radacki, J. K. Schuster, Nat. Chem. 2016, 8, 638–642.10.1038/nchem.2548Search in Google Scholar PubMed
[24] K. J. Iversen, D. J. D. Wilson, J. L. Dutton, Organometallics 2013, 32, 6209–6217.10.1021/om400800dSearch in Google Scholar
[25] Z. Mo, A. Rit, J. Campos, E. L. Kolychev, S. Aldridge, J. Am. Chem. Soc. 2016, 138, 3306–3309.10.1021/jacs.6b01170Search in Google Scholar PubMed
[26] R. J. Gilliard, M. Y. Abraham, Y. Wang, P. Wei, Y. Xie, B. Quillian, H. F. Schaefer, P. v. R. Schleyer, G. H. Robinson, J. Am. Chem. Soc. 2012, 134, 9953–9955.10.1021/ja304514fSearch in Google Scholar PubMed
[27] D. Naglav, A. Neumann, D. Bläser, C. Wölper, R. Haack, G. Jansen, S. Schulz, Chem. Commun. 2015, 51, 3889–3891.10.1039/C4CC09732GSearch in Google Scholar PubMed
[28] D. Naglav, M. R. Buchner, G. Bendt, F. Kraus, S. Schulz, Angew. Chem. Int. Ed. 2016, 55, 10562–10576.10.1002/anie.201601809Search in Google Scholar PubMed
[29] M. R. Buchner, Chem. Eur. J. 2019, 41, 655–659.10.1016/j.neulab.2019.08.002Search in Google Scholar
[30] D. Himmel, H. Scherer, D. Kratzert, I. Krossing, Z. Anorg. Allg. Chem. 2015, 641, 655–659.10.1002/zaac.201400476Search in Google Scholar
[31] F. A. Cotton, G. Wilkinson, Anorganische Chemie – Eine zusammenfassende Darstellung für Fortgeschrittene, 4. Auflage, Verlag Chemie, Weinheim, 1982.Search in Google Scholar
[32] D. Naglav, D. Bläser, C. Wölper, S. Schulz, Inorg. Chem. 2014, 53, 1241–1249.10.1021/ic402895hSearch in Google Scholar PubMed
[33] D. Naglav, B. Tobey, A. Neumann, D. Bläser, C. Wölper, S. Schulz, Organometallics 2015, 34, 3072–307810.1021/acs.organomet.5b00389Search in Google Scholar
[34] D. Naglav, B. Tobey, C. Wölper, D. Bläser, G. Jansen, S. Schulz, Eur. J. Inorg. Chem. 2016, 2424–2431.10.1002/ejic.201501433Search in Google Scholar
[35] D. Naglav, K. Dzialkowski, B. Tobey, G. Jansen, C. Wölper, S. Schulz, Dalton Trans 2018, 47, 12511–12515.10.1039/C8DT01640BSearch in Google Scholar
[36] 1: C13H10BBeF9N6O (457.09 g mol−1), monoclinic, P21/n, a=10.4092(11), b=12.9008(13), c=13.8906(16) Å, β=100.978(6)°, crystal size 0.267×0.168×0.157 mm3, V=1831.2(3) Å3, Z=4, Dcalcd=1.66 g·cm−1, F(000)=912 e, hkl range –14≤h≤14, –18≤k≤18, –19≤l≤19, θmax=30.578, refl. measured 34365 (5530 unique), Rint 0.0300, param. refined 284, R(F)/wR(F2) (all refl.) 0.0472/0.1364, GoF (F2) 1.054, Δρfin (max/min), e Å−3 0.70/–0.40.Search in Google Scholar
[37] C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785–789.10.1103/PhysRevB.37.785Search in Google Scholar
[38] R. Ahlrichs, M. Bär, M. Häser, H. Horn, C. Kölmel, Chem. Phys. Lett. 1989, 162, 165–169.10.1016/0009-2614(89)85118-8Search in Google Scholar
[39] A. D. Becke, Phys. Rev. A 1988, 38, 3098–3100.10.1103/PhysRevA.38.3098Search in Google Scholar
[40] A. D. Becke, J. Chem. Phys. 1993, 98, 1372–1377.10.1063/1.464304Search in Google Scholar
[41] F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297–3305.10.1039/b508541aSearch in Google Scholar PubMed
[42] A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev. 1988, 88, 899–926.10.1021/cr00088a005Search in Google Scholar
[43] H. L. Schmider, A. D. Becke, J. Chem. Phys. 2002, 116, 3184–319310.1063/1.1431271Search in Google Scholar
[44] H. Jacobsen, Can. J. Chem. 2008, 86, 695–70210.1139/v08-052Search in Google Scholar
[45] W. R. Parkes, Occupational Lung Disorders, London, Butterworths, 1982.Search in Google Scholar
[46] L. B. Tepper, H. L. Hardy, R. I. Chamberlin, Toxicity of Beryllium Compounds, Elsevier, Amsterdam, 1961.Search in Google Scholar
[47] G. M. Sheldrick, Acta Crystallogr. 1990, A46, 467–473.10.1107/S0108767390000277Search in Google Scholar
[48] G. M. Sheldrick, Shelxl-2014, Program for the Refinement of Crystal Structures University of Göttingen, Göttingen (Germany) 2014.Search in Google Scholar
[49] G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112–122.10.1107/S0108767307043930Search in Google Scholar PubMed
[50] C. B. Hübschle, G. M. Sheldrick, B. Dittrich, ShelXle, A Qt graphical user interface for Shelxl, University of Göttingen, Göttingen (Germany) 2011.10.1107/S0021889811043202Search in Google Scholar PubMed PubMed Central
[51] C. B. Hübschle, G. M. Sheldrick, B. Dittrich, J. Appl. Cryst. 2011, 44, 1281–1284.10.1107/S0021889811043202Search in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/znb-2020-0034).
©2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this Issue
- Preface
- Progress in the chemistry and biochemistry of beryllium
- Research Articles
- Beryllium-associated diseases from a chemist’s point of view
- A consistent model for the key complex in chronic beryllium disease
- Reviews
- The role of beryllium in alloys, Zintl phases and intermetallic compounds
- Solid-state Be-9 NMR of beryllium compounds
- 9Be nuclear magnetic resonance spectroscopy trends in discrete complexes: an update
- Research Articles
- Coordination chemistry of Be2+ ions with chelating oxygen donor ligands: further insights using electrospray mass spectrometry
- Formation of amidoberyllates from beryllium and alkali metals in liquid ammonia
- A brief visit to the BeCl2/ZnCl2 system and the prediction of a new polymorph of ZnCl2
- Crystallographic study of a heteroleptic chloroberyllium borohydride carbodicarbene complex
- Hungry for charge – how a beryllium scorpionate complex “eats” a weakly coordinating anion
- Synthesis and crystal structures of β-[Be(DMF)4]I2, [Be(Pyr)4]I2, [Be(NMP)4]I2 and [BeI2(Lut)2]
Articles in the same Issue
- Frontmatter
- In this Issue
- Preface
- Progress in the chemistry and biochemistry of beryllium
- Research Articles
- Beryllium-associated diseases from a chemist’s point of view
- A consistent model for the key complex in chronic beryllium disease
- Reviews
- The role of beryllium in alloys, Zintl phases and intermetallic compounds
- Solid-state Be-9 NMR of beryllium compounds
- 9Be nuclear magnetic resonance spectroscopy trends in discrete complexes: an update
- Research Articles
- Coordination chemistry of Be2+ ions with chelating oxygen donor ligands: further insights using electrospray mass spectrometry
- Formation of amidoberyllates from beryllium and alkali metals in liquid ammonia
- A brief visit to the BeCl2/ZnCl2 system and the prediction of a new polymorph of ZnCl2
- Crystallographic study of a heteroleptic chloroberyllium borohydride carbodicarbene complex
- Hungry for charge – how a beryllium scorpionate complex “eats” a weakly coordinating anion
- Synthesis and crystal structures of β-[Be(DMF)4]I2, [Be(Pyr)4]I2, [Be(NMP)4]I2 and [BeI2(Lut)2]