Abstract
Despite the favorable NMR-spectroscopic features of the 9Be isotope, the exploration of solid Beryllium compounds by this method has been very limited, owing to safety concerns regarding their preparation and handling. The present review aims to be the first comprehensive one on this topic, summarizing the classical and modern methodologies available for determining the relevant 9Be NMR observables in the solid state. Results on molecular crystals, oxidic materials, and intermetallic systems will be discussed in terms of their informational content in relation to atomic and electronic structure and dynamics, leading to suggestions for future paths of investigation.
Acknowledgements
This work was supported by FAPESP, process number 07793-6 and the Deutsche Forschungsgemeinschaft.
Conflict of interest statement: I declare the absence of any conflict of interest.
References
[1] E. S. Crew, Rev. Mineral. Geochem. 2002, 50, 1–76.10.2138/rmg.2202.50.01Search in Google Scholar
[2] J. M. Marder, J. Metals 1984, 45–47.10.1016/0045-8732(84)90125-6Search in Google Scholar
[3] R. Puchta, Nature Chem. 2011, 3, 416.10.1038/nchem.1033Search in Google Scholar
[4] Y. N. Mazurin, V. S. Kiiko, I. R. Shein, V. A. Maslov, A. L. Ivanovskii, Refract. Ind. Ceram. 2010, 51, 167–171.10.1007/s11148-010-9282-9Search in Google Scholar
[5] H. L. Hardy, I. R. Tabershaw, J. Ind. Hyg. Toxicol. 1946, 28, 197–211.Search in Google Scholar
[6] C. H. Townes, C. Herring, W. D. Knight, Phys. Rev. 1950, 77, 852–853.10.1103/PhysRev.77.852Search in Google Scholar
[7] N. A. Schuster, G. E. Pake, Phys. Rev. 1951, 81, 886–887.10.1103/PhysRev.81.886Search in Google Scholar
[8] C. Dufresne, S. Dion, S. Viau, G. Perrault, Ann. Occup. Hyg. 2009, 53, 669–675.Search in Google Scholar
[9] P. A. Gronka, G. J. Tomchick, R. L. Bobkoskie, H. J. Suroviec, Am. Ind. Hyg. Assoc. J. 1971, 32, 199–202.10.1080/0002889718506437Search in Google Scholar
[10] C. Leroy, D. L. Bryce, Prog. Nucl. Magn. Reson. Spectrosc. 2018, 109, 160–199.10.1016/j.pnmrs.2018.08.002Search in Google Scholar
[11] S. Fitzgerald, M. E. Smith, Multinuclear Solid-State NMR of Inorganic Materials, Pergamon Press, Amsterdam, Boston, 2002, pp. 639–642.Search in Google Scholar
[12] H. Eckert, Prog. Nucl. Magn. Reson. Spectrosc. 1992, 24, 159–293.10.1016/0079-6565(92)80001-VSearch in Google Scholar
[13] A. Abragam, Principles of Nuclear Magnetism; Oxford University Press, Oxford 1961, ISBN 978-0-19-852014-6.Search in Google Scholar
[14] M. J. Duer, Solid State NMR Spectroscopy: Principles and Applications, Wiley-Blackwell, Malden, MA, 2002, ISBN 978-0-632-05351–3.Search in Google Scholar
[15] C. P. Slichter, Principles of Magnetic Resonance, Springer Series in Solid-State Sciences; 3rd ed., Springer-Verlag, Berlin, Heidelberg, 1990, ISBN 978-3-540-50157-2.10.1007/978-3-662-09441-9Search in Google Scholar
[16] K. Schmidt-Rohr, H. W. Spiess, Multidimensional Solid-State NMR and Polymers; Academic Press, London, 1994.Search in Google Scholar
[17] R. K. Harris, E. D. Becker, S. M. Cabral De Menezes, P. Granger, R. E. Hoffman, K. W. Zilm, Solid State Nucl. Magn. Reson. 2008, 33, 41–56.10.1016/j.ssnmr.2008.02.004Search in Google Scholar
[18] P. P. Man, in Encyclopedia of Nuclear Magnetic Resonance, Vol. 6, John Wiley & Sons, Chichester, pp. 3838–3848, ISBN: 978-0-471-49082-1.Search in Google Scholar
[19] E. R. Andrew, A. Bradbury, R. G. Eades, Nature 1958, 182, 1659.10.1038/1821659a0Search in Google Scholar
[20] D. Massiot, F. Fayon, M. Capron, I. King, S. L. Calvé, B. Alonso, J. O. Durand, B. Bujoli, Z. Gan, G. Hoatson, Magn. Reson. Chem. 2002, 40, 70–76.10.1002/mrc.984Search in Google Scholar
[21] M. Bak, J. T. Rasmussen, N. C. Nielsen, J. Magn. Reson. 2011, 213, 366–400.10.1016/j.jmr.2011.09.008Search in Google Scholar
[22] F. A. Perras, C. M. Widdifield, D. L. Bryce, Solid State Nucl. Magn. Reson. 2012, 45–46, 36–44.10.1016/j.ssnmr.2012.05.002Search in Google Scholar
[23] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, (revision B.01), Gaussian, Inc., Wallingford CT (USA) 2009.Search in Google Scholar
[24] R. Ahlrichs, F. Furche, C. Hättig, TURBOMOLE (version 6.5.), University of Karlsruhe, Karlsruhe (Germany) 2013.Search in Google Scholar
[25] P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties; 2nd ed., Vienna University of Technology, Vienna (Austria) 2001, ISBN 3-9501031-1.Search in Google Scholar
[26] J. Herzfeld, A. E. Berger, J. Chem. Phys. 1980, 73, 6021–6030.10.1063/1.440136Search in Google Scholar
[27] J. J. van der Klink, H. B. Brom, Prog. Nucl. Magn. Reson. Spectrosc. 2000, 36 89-201.10.1016/S0079-6565(99)00020-5Search in Google Scholar
[28] J. H. van Vleck, Phys. Rev. 1948, 74, 1168–1183.10.1103/PhysRev.74.1168Search in Google Scholar
[29] A. E. Bennett, C. M. Rienstra, M. Auger, K. V. Lakshmi, R. G. Griffin, J. Chem. Phys. 1995, 103, 6951–6958.10.1063/1.470372Search in Google Scholar
[30] D. F. Gaines, K. M. Cleson, D. F: Hillenbrand, J. Magn Reson. 1981, 44, 84–88.10.1016/0022-2364(81)90191-8Search in Google Scholar
[31] D. E. Kaplan, E. Hahn, J. Phys. Radium 1958, 19, 821–825.10.1051/jphysrad:019580019011082100Search in Google Scholar
[32] V. D. Kodibagkar, P. A. Fedders, C. D. Browning, R. C. Bowman Jr., N. M. I. Adolphi, M. S. Conradi, Phys. Rev. B 2003, 67, 045107.10.1103/PhysRevB.67.045107Search in Google Scholar
[33] J. Jeener, P. Broekaert, Phys. Rev. 1967, 157, 232–240.10.1103/PhysRev.157.232Search in Google Scholar
[34] M. Storek, J. F. Tilly, K. R. Jeffrey, R. Böhmer, J. Magn. Reson. 2017, 272, 1–9 and references therein.10.1016/j.jmr.2017.06.010Search in Google Scholar
[35] P. G. Plieger. Z. Naturforsch. 2020, in press, this issue.Search in Google Scholar
[36] P. G. Plieger, K. D. John, T. S. Keizer, T. M. McCleskey, A. K. Burrell, R. L. Martin, J. Am. Chem. Soc. 2004, 126, 14651–14658.10.1021/ja046712xSearch in Google Scholar
[37] D. L. Bryce, R. M. Wasylishen, J. Phys. Chem. A 1999, 103, 7364–7372.10.1021/jp9918003Search in Google Scholar
[38] C. Leroy, J. K. Schuster, T. Schaefer, K. Müller-Buschbaum, H. Braunschweig, D. L. Bryce, Can. J. Chem. 2018, 96, 656–652.10.1139/cjc-2017-0704Search in Google Scholar
[39] I. Hung, C. L. B. MacDonald, R. W. Schurko, Chem. Eur. J. 2004, 10, 5923–5935.10.1002/chem.200400404Search in Google Scholar
[40] R. Blinc, J. Slak, J. Stepisnik, J. Chem. Phys. 1971, 55, 4848–4850.10.1063/1.1675589Search in Google Scholar
[41] F. Qi, T. Jörg, R. Böhmer, Solid State Nucl. Magn. Reson. 2002, 22, 484–500.10.1006/snmr.2002.0073Search in Google Scholar
[42] J. A. Walter, G. J. Troup, J. Nucl. Mater. 1970, 36, 189–199.10.1016/0022-3115(70)90143-1Search in Google Scholar
[43] J. A. Walter, G. J. Troup, J. Nucl. Mater. 1971, 38, 51–66.10.1016/0022-3115(71)90007-9Search in Google Scholar
[44] G. J. Troup, J. A. Walter, J. Nucl. Mater. 1964, 14, 272–274.10.1016/0022-3115(64)90188-6Search in Google Scholar
[45] G. J. Troup, Phys. Lett. 1962, 2, 9–11.10.1016/0031-9163(62)90093-8Search in Google Scholar
[46] J. Hon, Phys. Rev. 1961, 124, 1368–1372.10.1103/PhysRev.124.1368Search in Google Scholar
[47] R. H. Thorland, A. K. Garrison, R. C. DuVarney, Phys. Rev. B, 1972, 5, 784–788.10.1103/PhysRevB.5.784Search in Google Scholar
[48] J. Skibsted, P. Norby, H. Bildsoe, H. J. Jakobsen, Solid State Nucl. Magn. Reson. 1995, 5, 239–255.10.1016/0926-2040(95)01195-7Search in Google Scholar
[49] B. L. Sheriff, H. D. Grundy, J. S. Hartmann, F. C. Hawthorne, P. Cerny, Can. Mineral. 1991, 29, 271–285Search in Google Scholar
[50] Z. Xu, B. L. Sherriff, Can. Mineral. 1994, 32, 935–943.10.1515/cclm.1994.32.12.935Search in Google Scholar
[51] H. L. Reaves, T. E. Gilmer, J. Chem. Phys. 1965, 42, 4138–4140.10.1063/1.1695907Search in Google Scholar
[52] T. H. Yeom, A. R. Lim, S. H. Choh, K. S. Hong, Y. M. Yu, J. Phys. Cond. Matter 1995, 7, 6117–6125.10.1088/0953-8984/7/30/014Search in Google Scholar
[53] L. C. Brown, D. Williams, J. Chem. Phys., 1956, 24, 751.10.1063/1.1742603Search in Google Scholar
[54] V. N. Romannikov, L. S. Chumachenko, V. M. Mastikhin, K. G. Ione, J. Catal. 1985, 94, 508–513.10.1016/0021-9517(85)90215-5Search in Google Scholar
[55] K. G. Ione, L. A. Vostrikova, V. M. Mastikhin, J. Mol. Catal. 1985, 31, 355–370.10.1016/0304-5102(85)85118-XSearch in Google Scholar
[56] S. Han, K. D. Schmitt, D. S. Shitabi, C. C. Chang, J. Chem. Soc. Chem. Commun. 1993, 1287–1289.10.1039/c39930001287Search in Google Scholar
[57] W. T. A. Harrison, T. M. Nenoff, T. E. Gier, G. D. Stucky, Inorg. Chem. 1993, 32, 2437–2441.10.1021/ic00063a039Search in Google Scholar
[58] W. T. A Harrison, T. M. Nenoff, T. E. Gier, G. D. Stucky, J. Solid State Chem. 1994, 111, 224–228.10.1006/jssc.1994.1221Search in Google Scholar
[59] W. T. A. Harrison, T. E. Gier, K. L. Moran, J. M. Nicol, H. Eckert, G. D. Stucky, Chem. Mater. 1991, 3, 27–29.10.1021/cm00013a012Search in Google Scholar
[60] T. M. Nenoff, W. T. A. Harrison, T. E. Gier, J. M. Nicol, G. D. Stucky, Zeolites 1992, 12, 770–775.10.1016/0144-2449(92)90048-TSearch in Google Scholar
[61] K. L. Moran, W. T. A. Harrison, I. Kamber, T. E. Gier, X. Bu, D. Herren, P. Behrens, H. Eckert, G. D. Stucky, Chem. Mater. 1996, 8, 1930–1943.10.1021/cm960168cSearch in Google Scholar
[62] S. E. Dann, M. T. Weller, Solid State Nucl. Magn. Reson. 1997, 10, 89–94.10.1016/S0926-2040(97)00016-7Search in Google Scholar
[63] M. T. Weller, M. E. Brenchley, D. C. Apperley, N. A. Davies, Solid State Nucl. Magn. Reson. 1994, 3, 103–106.10.1016/0926-2040(94)90028-0Search in Google Scholar
[64] S. Sen, P. Yu, Phys. Rev B 2005, 72, 132203.10.1103/PhysRevB.72.132203Search in Google Scholar
[65] S. Sen, P. Yu, V. P. Klyuev, B. Z. Pevzner, J. Non-Cryst. Solids 2008, 354, 4005–4011.10.1016/j.jnoncrysol.2008.06.002Search in Google Scholar
[66] C. M. Baldwin, R. M. Almeida, J. D. Mackenzie, J. Non-Cryst. Solids 1981, 43, 309–344.10.1016/0022-3093(81)90101-0Search in Google Scholar
[67] W. J. Dell, R. V. Mulkern, P. J. Bray, M. J. Weber, S. A. Brawer, Phys. Rev. B 1985, 31, 2624–2633.10.1103/PhysRevB.31.2624Search in Google Scholar
[68] D. E. Barnaal, R. G. Barnes, B. R. McCarty, L. W. Mohn, D. R. Torgeson, Phys. Rev. 1967, 157, 510–515.10.1103/PhysRev.157.510Search in Google Scholar
[69] M. N. Alexander, P. L. Sagalyn, J. A. Hofmann, W. J. Croft, Phys. Rev. B 1980, 22, 32–44.10.1103/PhysRevB.22.32Search in Google Scholar
[70] H. Alloul, C. Froidevaux, J. Phys. Chem. Solids 1968, 29, 1623–1631.10.1016/0022-3697(68)90104-2Search in Google Scholar
[71] W. T. Anderson, M. Ruhlig, R. R. Hawitt, Phys. Rev. 1967, 161, 293–295.10.1103/PhysRev.161.293Search in Google Scholar
[72] B. Mishra, L. K. Das, T. Sahu, G. S. Tripathi, P. K. Misra, J. Phys.: Condens. Matter 1990, 2, 9891–9905.10.1088/0953-8984/2/49/014Search in Google Scholar
[73] M. Pomerantz T. P. Das, Phys. Rev. 1960, 119, 70–79.10.1103/PhysRev.119.70Search in Google Scholar
[74] V. E. Wood, F. J. Milford, J. Phys. Chem. Solids 1962, 23, 160–161b.10.1016/0022-3697(62)90072-0Search in Google Scholar
[75] W. Schneider, L. Jansen, L. Etienne-Amberg, Physica 1964, 30, 84–94.10.1016/0031-8914(64)90203-4Search in Google Scholar
[76] W. M. Itano, Phys. Rev. B 1983, 27, 1906–1907.10.1103/PhysRevB.27.1906Search in Google Scholar
[77] V. P. Tarasov, Yu. B. Muravlev, G. A. Kirakosyan, Fiz. Tverd. Tela 2008, 50, 968–971.10.1134/S1063783408060024Search in Google Scholar
[78] M. Bernasson, P. Desouts, G. A. Styles, Helv. Phys. Acta 1970, 43, 393–401.Search in Google Scholar
[79] H. Saji, T. Yamadaya, M. Asanuma, J. Phys. Soc. Jpn. 1966, 21, 255–261.10.1143/JPSJ.21.255Search in Google Scholar
[80] S. Domngang, R. Jesser, R. Schwaller, Solid State Commun. 1972, 11, 623–627.10.1016/0038-1098(72)90475-9Search in Google Scholar
[81] F. Borsa, G. Olcese, Phys. Status Solidi A 1973, 17, 631–642.10.1002/pssa.2210170230Search in Google Scholar
[82] D. E. MacLaughlin, C. Tien, W. G. Clark, M. D. Lan, Z. Fisk, J. L. Smith, H. R. Ott, Phys. Rev. Lett. 1984, 53, 1833–1836.10.1103/PhysRevLett.53.1833Search in Google Scholar
[83] W. G. Clark, M. D. Lan, G. van Kalkeren, W. H. Wong, C. Tien, D. E. MacLaughlin, J. L. Smith, Z. Fisk, H. R. Ott, J. Magn. Magn. Mater. 1987, 63–64, 396–39910.1016/0304-8853(87)90620-2Search in Google Scholar
[84] H. Tou, N. Tsugawa, M. Sera, Y. Haga, Y Onuki, J. Magn. Magn. Mater. 2007, 310, 706–708.10.1016/j.jmmm.2006.10.271Search in Google Scholar
[85] H. Tou, N. Tsugawa, M. Sera, H. Harima, Y. Haga, Y. Onuki, J. Phys. Soc. Jpn 2007, 76, 02470510.1143/JPSJ.76.024705Search in Google Scholar
[86] H. Matsuno, K. Morita, H. Kotegawa, H. Tou, Y. Haga, E. Yamamoto, Y. Onuki, J. Phys. Conf. Ser. 2017, 807, 052015.10.1088/1742-6596/807/5/052015Search in Google Scholar
[87] E. T. Ahrens, P. C. Hammel, R. H. Heffner, A. P. Reyes, J. L. Smith, W. G. Clark, Phys Rev. B 1993, 48, 6691–6694.10.1103/PhysRevB.48.6691Search in Google Scholar
[88] E. T, Ahrens, R. H. Heffner, P. C. Hammel, A. P. Reyes, J. D. Thompson, J. L. Smith, W. G. Clark, Phys. Rev. B 1999, 59, 1432–1443.10.1103/PhysRevB.59.1432Search in Google Scholar
[89] J. Goebbbels, K. Lüders, H. Freyhardt, J. Reichelt, Nucl. Instr. Meth. 1982, 199, 203–20510.1016/0167-5087(82)90198-3Search in Google Scholar
[90] J. Goebbbels, K. Lüders, H. Freyhardt, J. Reichelt, Physica 1981, 8, 1223–1224.10.1016/0378-4363(81)90912-8Search in Google Scholar
[91] H. C. Freyhardt, J. Goebbbels, K. Lüders, J. Reichelt, Phys. Status Solidi B 1980, 19, K137–141.10.1002/pssb.2221020246Search in Google Scholar
[92] X. P. Tang, J. F. Löffler, W. L. Johnson, Y. Wu, J. Non-Cryst. Solids 2003, 317, 118–122.10.1016/S0022-3093(02)01991-9Search in Google Scholar
[93] X. P. Tang, Y. Wu, J. Magn. Reson. 1998, 133, 155–165.10.1006/jmre.1998.1451Search in Google Scholar PubMed
[94] X. P. Tang, U. Geyer, R. Busch, W. L. Johnson, Y. Wu, Nature 1999, 402, 160–162.10.1038/45996Search in Google Scholar
[95] X. P. Tang, R. Busch, W. L. Johnson, Y. Wu, Phys. Rev. Lett. 1998, 81, 5358–5361.10.1103/PhysRevLett.81.5358Search in Google Scholar
©2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this Issue
- Preface
- Progress in the chemistry and biochemistry of beryllium
- Research Articles
- Beryllium-associated diseases from a chemist’s point of view
- A consistent model for the key complex in chronic beryllium disease
- Reviews
- The role of beryllium in alloys, Zintl phases and intermetallic compounds
- Solid-state Be-9 NMR of beryllium compounds
- 9Be nuclear magnetic resonance spectroscopy trends in discrete complexes: an update
- Research Articles
- Coordination chemistry of Be2+ ions with chelating oxygen donor ligands: further insights using electrospray mass spectrometry
- Formation of amidoberyllates from beryllium and alkali metals in liquid ammonia
- A brief visit to the BeCl2/ZnCl2 system and the prediction of a new polymorph of ZnCl2
- Crystallographic study of a heteroleptic chloroberyllium borohydride carbodicarbene complex
- Hungry for charge – how a beryllium scorpionate complex “eats” a weakly coordinating anion
- Synthesis and crystal structures of β-[Be(DMF)4]I2, [Be(Pyr)4]I2, [Be(NMP)4]I2 and [BeI2(Lut)2]
Articles in the same Issue
- Frontmatter
- In this Issue
- Preface
- Progress in the chemistry and biochemistry of beryllium
- Research Articles
- Beryllium-associated diseases from a chemist’s point of view
- A consistent model for the key complex in chronic beryllium disease
- Reviews
- The role of beryllium in alloys, Zintl phases and intermetallic compounds
- Solid-state Be-9 NMR of beryllium compounds
- 9Be nuclear magnetic resonance spectroscopy trends in discrete complexes: an update
- Research Articles
- Coordination chemistry of Be2+ ions with chelating oxygen donor ligands: further insights using electrospray mass spectrometry
- Formation of amidoberyllates from beryllium and alkali metals in liquid ammonia
- A brief visit to the BeCl2/ZnCl2 system and the prediction of a new polymorph of ZnCl2
- Crystallographic study of a heteroleptic chloroberyllium borohydride carbodicarbene complex
- Hungry for charge – how a beryllium scorpionate complex “eats” a weakly coordinating anion
- Synthesis and crystal structures of β-[Be(DMF)4]I2, [Be(Pyr)4]I2, [Be(NMP)4]I2 and [BeI2(Lut)2]