Abstract
Reactions of zinc chloride with beryllium chloride in the molar ratios of 1:1 and 3:2 at T = 300°C in sealed ampoules lead to the formation of the two compounds Be1−xZnxCl2 (x = 0.563(2) and 0.489(3), respectively). Their composition and crystal structures were evidenced by single crystal X-ray structure analysis. Both compounds crystallize isotypic to β-BeCl2 in the tetragonal space group I41/acd, No. 142, tI96, with a = 10.7548(1), c = 19.4656(5) Å, V = 2251.50(7) Å3, Z = 32 at T = 100 K for the first and a = 10.7511(3), c = 19.2335(10) Å, V = 2223.1(2) Å3, Z = 32 at T = 100 K for the second compound. The positions of the Be atoms are mixed-occupied by Zn atoms. The compounds were additionally characterized by powder X-ray diffraction and infrared spectroscopy. Plots according to Vegard’s law allowed for extrapolation towards a neat ZnCl2 phase that would crystallize in the β-BeCl2 structure, which is the ZnI2 structure type. Quantum chemical calculations have confirmed that such a ZnCl2 modification would represent a true local minimum.
Acknowledgement
We thank the Deutsche Forschungsgemeinschaft for funding and Magnus R. Buchner for the donation of beryllium chloride. Computational resources were provided by CSC, the Finnish IT Center for Science.
References
[1] H. Rose, Ann. Phys. Chem. 1827, 85, 23–48.10.1002/andp.18270850104Search in Google Scholar
[2] J. R. Glauber, Glauberus Concentratus, Faksimile Der Leipziger Ausgabe von 1714, Ulm, 1961.Search in Google Scholar
[3] E. Spundflasche, H. Fink, H. J. Seifert, Z. Anorg. Allg. Chem. 1995, 621, 1723–1726.10.1002/zaac.19956211018Search in Google Scholar
[4] R. E. Rundle, P. H. Lewis, J. Chem. Phys. 1952, 20, 132–134.10.1063/1.1700153Search in Google Scholar
[5] B. Brehzer, Naturwissenschaften 1959, 46, 106–106.10.1007/BF00638314Search in Google Scholar
[6] B. Brehler, Naturwissenschaften 1959, 46, 554–554.10.1007/BF00631282Search in Google Scholar
[7] H. L. Yakel, J. Brynestad, Inorg. Chem. 1978, 17, 3294–3296.10.1021/ic50189a067Search in Google Scholar
[8] P. Villars, K. Cenzual, Pearson’s Crystal Data – Crystal Structure Database for Inorganic Compounds (on DVD), Release 2019/20, ASM International, Materials Park, Ohio 2019.Search in Google Scholar
[9] D. Naglav, M. R. Buchner, G. Bendt, F. Kraus, S. Schulz, Angew. Chem. Int. Ed. 2016, 55, 10562–10576.10.1002/anie.201601809Search in Google Scholar
[10] H. J. Steiner, H. D. Lutz, J. Solid State Chem. 1992, 100, 179–181.10.1016/0022-4596(92)90169-VSearch in Google Scholar
[11] H.-C. Gaebell, G. Meyer, Z. Anorg. Allg. Chem. 1984, 515, 133–140.10.1002/zaac.19845150815Search in Google Scholar
[12] K. H. Semenenko, A. I. Grigor’ev, Russ. J. Inorg. Chem. 1965, 10, 1410–1413.Search in Google Scholar
[13] A. Assoud, G. Meyer, Z. Anorg. Allg. Chem. 2002, 628, 2199–2199.10.1002/1521-3749(200209)628:9/10<2199::AID-ZAAC2199>3.0.CO;2-#Search in Google Scholar
[14] R. P. Ziebarth, J. D. Corbett, J. Solid State Chem. 1989, 80, 56–67.10.1016/0022-4596(89)90031-5Search in Google Scholar
[15] J. Beck, A. Fischer, A. Stankowski, Z. Anorg. Allg. Chem. 2002, 628, 2542–2548.10.1002/1521-3749(200211)628:11<2542::AID-ZAAC2542>3.0.CO;2-1Search in Google Scholar
[16] M. Samouel, A. De Kozak, Rev. Chim. Miner. 1972, 9, 815–819.Search in Google Scholar
[17] R. D. Shannon, Acta Crystallogr. 1976, A32, 751–767.10.1107/S0567739476001551Search in Google Scholar
[18] H.-S. Li, R. C. Mohanty, A. Raman, C. G. Grenier, J. Magn. Magn. Mater. 1996, 162, 301–306.10.1016/S0304-8853(96)00281-8Search in Google Scholar
[19] I. Higashi, J. Solid State Chem. 1980, 32, 201–212.10.1016/0022-4596(80)90568-XSearch in Google Scholar
[20] B. P. Sobolev, I. P. Klyagina, Russ. J. Inorg. Chem. 1960, 5, 1112–1114.Search in Google Scholar
[21] T. Hahn, W. Eysel, Neues Jahrb. Mineral., Monatsh. 1970, 263–267.Search in Google Scholar
[22] P. H. Fourcroy, D. Carré, J. Rivet, Acta Crystallogr. 1978, B34, 3160–3162.10.1107/S0567740878010390Search in Google Scholar
[23] S. I. Troyanov, Russ. J. Inorg. Chem. 2000, 45, 1481–1486.Search in Google Scholar
[24] B. Brehler, Z. Kristallogr. 1961, 115, 373–402.10.1524/zkri.1961.115.5-6.373Search in Google Scholar
[25] V. H. Jacobs, Z. Anorg. Allg. Chem. 1976, 427, 1–7.10.1002/zaac.654270102Search in Google Scholar
[26] M. Hostettler, H. Birkedal, D. Schwarzenbach, Acta Crystallogr. 2002, B58, 903–913.10.1107/S010876810201618XSearch in Google Scholar
[27] C. Chieh, M. A. White, Z. Kristallogr. – Cryst. Mater. 1984, 166, 189–197.10.1524/zkri.1984.166.3-4.189Search in Google Scholar
[28] M. Müller, F. Pielnhofer, M. R. Buchner, Dalton Trans. 2018, 47, 12506–12510.10.1039/C8DT01756ESearch in Google Scholar
[29] A. Snelson, J. Phys. Chem. 1968, 72, 250–252.10.1021/j100847a046Search in Google Scholar
[30] A. Givan, A. Loewenschuss, J. Chem. Phys. 1980, 72, 3809–3821.10.1063/1.439596Search in Google Scholar
[31] W. Stählin, H. R. Oswald, J. Solid State Chem. 1971, 252–255.10.1016/0022-4596(71)90037-5Search in Google Scholar
[32] R. Dovesi, A. Erba, R. Orlando, C. M. Zicovich-Wilson, B. Civalleri, L. Maschio, M. Rérat, S. Casassa, J. Baima, S. Salustro, B. Kirtman, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2018, 8, e1360.10.1002/wcms.1360Search in Google Scholar
[33] OPUS (version 7.2), Bruker Optik GmbH, Ettlingen (Germany) 2012.Search in Google Scholar
[34] X-Area, STOE & Cie GmbH, Darmstadt (Germany) 2018.Search in Google Scholar
[35] G. M. Sheldrick, Acta Crystallogr. 2015, A71, 3–8.10.1107/S2053273314026370Search in Google Scholar
[36] G. M. Sheldrick, Acta Crystallogr. 2015, C71, 3–8.Search in Google Scholar
[37] WinXPOW, STOE & Cie GmbH, Darmstadt, Germany, 2015.Search in Google Scholar
[38] V. Petříček, M. Dušek, L. Palatinus, Z. Kristallogr. 2014, 229, 345–352.10.1515/zkri-2014-1737Search in Google Scholar
[39] C. Adamo, V. Barone, J. Chem. Phys. 1999, 110, 6158–6170.10.1063/1.478522Search in Google Scholar
[40] F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297–3305.10.1039/b508541aSearch in Google Scholar PubMed
[41] A. J. Karttunen, T. Tynell, M. Karppinen, J. Phys. Chem. C 2015, 119, 13105–13114.10.1021/acs.jpcc.5b03433Search in Google Scholar
[42] V. Sivchik, R. K. Sarker, Z.-Y. Liu, K.-Y. Chung, E. V. Grachova, A. J. Karttunen, P.-T. Chou, I. O. Koshevoy, Chem. Eur. J. 2018, 24, 11475–11484.10.1002/chem.201802182Search in Google Scholar PubMed
[43] H. J. Monkhorst, J. D. Pack, Phys. Rev. B 1976, 13, 5188–5192.10.1103/PhysRevB.13.5188Search in Google Scholar
[44] F. Pascale, C. M. Zicovich-Wilson, F. López Gejo, B. Civalleri, R. Orlando, R. Dovesi, J. Comput. Chem. 2004, 25, 888–897.10.1002/jcc.20019Search in Google Scholar PubMed
[45] C. M. Zicovich-Wilson, F. Pascale, C. Roetti, V. R. Saunders, R. Orlando, R. Dovesi, J. Comput. Chem. 2004, 25, 1873–1881.10.1002/jcc.20120Search in Google Scholar PubMed
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/znb-2020-0023).
©2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this Issue
- Preface
- Progress in the chemistry and biochemistry of beryllium
- Research Articles
- Beryllium-associated diseases from a chemist’s point of view
- A consistent model for the key complex in chronic beryllium disease
- Reviews
- The role of beryllium in alloys, Zintl phases and intermetallic compounds
- Solid-state Be-9 NMR of beryllium compounds
- 9Be nuclear magnetic resonance spectroscopy trends in discrete complexes: an update
- Research Articles
- Coordination chemistry of Be2+ ions with chelating oxygen donor ligands: further insights using electrospray mass spectrometry
- Formation of amidoberyllates from beryllium and alkali metals in liquid ammonia
- A brief visit to the BeCl2/ZnCl2 system and the prediction of a new polymorph of ZnCl2
- Crystallographic study of a heteroleptic chloroberyllium borohydride carbodicarbene complex
- Hungry for charge – how a beryllium scorpionate complex “eats” a weakly coordinating anion
- Synthesis and crystal structures of β-[Be(DMF)4]I2, [Be(Pyr)4]I2, [Be(NMP)4]I2 and [BeI2(Lut)2]
Articles in the same Issue
- Frontmatter
- In this Issue
- Preface
- Progress in the chemistry and biochemistry of beryllium
- Research Articles
- Beryllium-associated diseases from a chemist’s point of view
- A consistent model for the key complex in chronic beryllium disease
- Reviews
- The role of beryllium in alloys, Zintl phases and intermetallic compounds
- Solid-state Be-9 NMR of beryllium compounds
- 9Be nuclear magnetic resonance spectroscopy trends in discrete complexes: an update
- Research Articles
- Coordination chemistry of Be2+ ions with chelating oxygen donor ligands: further insights using electrospray mass spectrometry
- Formation of amidoberyllates from beryllium and alkali metals in liquid ammonia
- A brief visit to the BeCl2/ZnCl2 system and the prediction of a new polymorph of ZnCl2
- Crystallographic study of a heteroleptic chloroberyllium borohydride carbodicarbene complex
- Hungry for charge – how a beryllium scorpionate complex “eats” a weakly coordinating anion
- Synthesis and crystal structures of β-[Be(DMF)4]I2, [Be(Pyr)4]I2, [Be(NMP)4]I2 and [BeI2(Lut)2]