Home Metal-free catalyzed arylsulfonylation of chloroquinoline with sodium arylsulfinates under microwave irradiation
Article
Licensed
Unlicensed Requires Authentication

Metal-free catalyzed arylsulfonylation of chloroquinoline with sodium arylsulfinates under microwave irradiation

  • Xi-Yong Li , Ya-Min Sun and Jin-Wei Yuan EMAIL logo
Published/Copyright: April 19, 2018
Become an author with De Gruyter Brill

Abstract

An efficient protocol for the synthesis of 2-arylsulfonyl quinolines has been developed via a metal-free catalyzed cross-coupling reaction of chloroquinoline with sodium arylsulfinates in moderate-to-good yields under microwave irradiation. The reactions proceed with a wide range of substrates with good functional group tolerance.

Acknowledgments

We gratefully acknowledge the Department of Henan Province Natural Science and Technology Foundation (No. 172102210225), Natural Science Foundation in Henan Province Department of Education (No. 17A150005), the Program for Innovative Research Team from Zhengzhou (No. 131PCXTD605), and the Project of Youth Backbone Teachers of Henan University of Technology (2016).

References

[1] E. J. Emmett, M. C. Willis, Asian J. Org. Chem. 2015, 4, 602.10.1002/ajoc.201500103Search in Google Scholar

[2] G. Liu, C. Fan, J. Wu, Org. Biomol. Chem. 2015, 13, 1592.10.1039/C4OB02139HSearch in Google Scholar

[3] J. Aziz, S. Messaoudi, M. Alami, A. Hamze, Org. Biomol. Chem.2014, 12, 9743.10.1039/C4OB01727GSearch in Google Scholar PubMed

[4] N. W. Liu, S. Liang, G. Manolikakes, Synthesis2016, 48, 1939.10.1055/s-0035-1560444Search in Google Scholar

[5] E. Vitaku, D. T. Smith, J. T. Njardarson, J. Med. Chem. 2014, 57, 10257.10.1021/jm501100bSearch in Google Scholar PubMed

[6] X. C. Hang, T. Fleetham, E. Turner, J. Brooks, J. Li, Angew. Chem. Int. Ed. 2013, 52, 6753.10.1002/anie.201302541Search in Google Scholar PubMed

[7] M. A. Grassberger, F. Turnowsky, J. Hildebrandt, J. Med. Chem. 1984, 27, 947.10.1021/jm00374a003Search in Google Scholar PubMed

[8] H. Y. Lee, J. Y. Chang, C. Y. Nien, C. C. Kuo, K. H. Shih, C. H. Wu, C. Y. Chang, W. Y. Lai, J. P. Liou, J. Med. Chem. 2011, 54, 8517.10.1021/jm201031fSearch in Google Scholar PubMed

[9] W. G. Trankle, M. E. Kopach, Org. Process Res. Dev. 2007, 11, 913.10.1021/op700060eSearch in Google Scholar

[10] Z. Y. Wu, H. Y. Song, X. L. Cui, C. Pi, W. W. Du, Y. J. Wu, Org. Lett. 2013, 15, 1270.10.1021/ol400178kSearch in Google Scholar PubMed

[11] K. Sun, X. L. Chen, X. Li, L. B. Qu, W. Z. Bi, X. Chen, H. L. Ma, S. T. Zhang, B. W. Han, Y. F. Zhao, C. J. Li, Chem. Commun. 2015, 51, 12111.10.1039/C5CC04484GSearch in Google Scholar

[12] R. J. Wang, Z. B. Zeng, C. Chen, N. N. Yi, J. Jiang, Z. Cao, W. Deng, J. N. Xiang, Org. Biomol. Chem. 2016, 14, 5317.10.1039/C6OB00925ESearch in Google Scholar

[13] Y. Su, X. J. Zhou, C. L. He, W. Zhang, X. Ling, X. Xiao, J. Org. Chem. 2016, 81, 4981.10.1021/acs.joc.6b00475Search in Google Scholar PubMed

[14] B. N. Du, P. Qian, Y. Wang, H. B. Mei, J. L. Han, Y. Pan, Org. Lett. 2016, 18, 4144.10.1021/acs.orglett.6b02289Search in Google Scholar PubMed

[15] W. K. Fu, K. Sun, C. Qu, X. L. Chen, L. B. Qu, W. Z. Bi, Y. F. Zhao, Asian J. Org. Chem. 2017, 6, 492.10.1002/ajoc.201700001Search in Google Scholar

[16] L. Sumunnee, C. Buathongjan, C. Pimpasri, S. Yotphan, Eur. J. Org. Chem. 2017, 2017, 1025.10.1002/ejoc.201601443Search in Google Scholar

[17] A. V. Ivachtchenko, E. S. Golovina, M. G. Kadieva, V. M. Kysil, O. D. Mitkin, S. E. Tkachenko, I. M. Okun, J. Med. Chem. 2011, 54, 8161.10.1021/jm201079gSearch in Google Scholar PubMed

[18] R. A. Hartz, A. G. Arvanitis, C. Arnold, J. P. Rescinito, K. L. Hung, G. Zhang, H. Wong, D. R. Langlev, P. J. Gilligan, G. L. Trainor, Bioorg. Med. Chem. Lett. 2006, 16, 934.10.1016/j.bmcl.2005.10.097Search in Google Scholar PubMed

[19] S. C. Surprenant, W. Y. Chan, C. Berthelette, Org. Lett. 2003, 5, 4851.10.1021/ol035918kSearch in Google Scholar PubMed

[20] N. S. Li, L. Scharf, E. J. Adams, J. A. Piccirilli, J. Org. Chem. 2013, 78, 5970.10.1021/jo4006602Search in Google Scholar PubMed

[21] S. Liang, R. Y. Zhang, L. Y. Xi, S. Y. Chen, X. Q. Yu, J. Org. Chem. 2013, 78, 11874.10.1021/jo401828bSearch in Google Scholar PubMed

[22] W. Zhu, D. W. Ma, J. Org. Chem. 2005, 70, 2696.10.1021/jo047758bSearch in Google Scholar PubMed

[23] S. Cacchi, G. Fabrizi, A. Goggiamani, L. M. Parisi, R. Bernini, J. Org. Chem. 2004, 69, 5608.10.1021/jo0493469Search in Google Scholar PubMed

[24] K. M. Maloney, J. T. Kuethe, K. Linn, Org. Lett. 2011, 13, 102.10.1021/ol102629cSearch in Google Scholar PubMed

[25] Y. Q. Yuan, S. R. Guo, Synlett2011, 18, 2750.10.1055/s-0031-1289541Search in Google Scholar

[26] B. Qu, L. P. Samankumara, J. Savoie, D. R. Fandrick, N. Haddad, X. Wei, S. Ma, H. Lee, S. Rodriguez, C. A. Busacca, N. K. Yee, J. J. Song, J. Org. Chem. 2014, 79, 993.10.1021/jo4024864Search in Google Scholar PubMed

[27] D. J. Brown, P. W. Ford, J. Chem. Soc. C1967, 7, 568.10.1039/j39670000568Search in Google Scholar


Supplemental Material:

The online version of this article offers supplementary ma(https://doi.org/10.1515/znb-2018-0007).


Received: 2018-1-6
Accepted: 2018-3-30
Published Online: 2018-4-19
Published in Print: 2018-5-24

©2018 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. In this Issue
  3. Synthesis of hexahydro-4-phenylquinoline-3-carbonitriles using Fe3O4@SiO2-SO3H nanoparticles as a superior and retrievable heterogeneous catalyst under ultrasonic irradiations
  4. 2-Naphthol-pyrazole conjugates as substrates in the Mannich reaction
  5. A heterotrimetallic Ni(II)–Dy(III) bis(salamo)-based complex: synthesis, structure and fluorescent property
  6. A highly effective and mild protocol for the production of 1-thioamidoalkyl-2-naphthols using 1,3-disulfonic acid imidazolium trifluoroacetate as a dual-functional catalyst
  7. Metal-free catalyzed arylsulfonylation of chloroquinoline with sodium arylsulfinates under microwave irradiation
  8. Triclinic conformational polymorph of N,N,N′,N′-tetrakis(2-cyanoethyl)-1,2-ethylenediamine (TCED)
  9. Lanthanide(III) complex metal-organic frameworks with a phenanthroline-carboxylate derivate and 2,5-thiophenedicarboxylate coligand: hydrothermal synthesis, crystal structure, and high thermostability
  10. Synthesis, crystal structure and photoluminescence of Re(I)2(μ-4,4′-bipyridine)(8-quinolinolato)2(CO)6
  11. A dinuclear molybdenum(VI) complex with a triaminoguanidine ligand: synthesis and structure of [Mo2O4(OH2)(DMF)(HtBu6L)]·3DMF ([H6tBu6L]Cl=tris(3,5-di-tert-butyl-2-hydroxybenzylidene)-triaminoguanidinium chloride)
  12. Syntheses and crystal structures of ruthenium complexes with bidentate salicylaldiminato and dithiophosphato ligands
  13. Synthesis and characterization of the new tin borate SnB8O11(OH)4
  14. Strukturen zweier Salze des Bis(thioharnstoff)gold(I)-Kations
  15. Book Review
  16. Metallo-Drugs: Development and Action of Anticancer Agents
Downloaded on 24.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2018-0007/html?lang=en
Scroll to top button