Abstract
The concept of the oxidation state of an atom in a chemical compound is formulated in terms of the quantum theory of many-electron systems and illustrated by calculations of oxidation numbers of calcium(I, II), phosphorus(0–V), sulfur(0–VI), fluorine(–I), oxygen(–II), and krypton(0) in CaCB11H6Cl6, CaCB11H12, CaC5H5,
Funding source: Russian Science Foundation
Award Identifier / Grant number: Grant No. 20-13-00225
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: The authors are very grateful to the Russian Science Foundation (Grant No. 20-13-00225).
-
Data availability: Not applicable.
References
[1] C. K. Jørgensen, Oxidation Numbers and Oxidation States, Berlin, Springer-Verlag, 1969.10.1007/978-3-642-87758-2Suche in Google Scholar
[2] J. E. Huheey, Inorganic Chemistry. Principles of Structure and Reactivity, 3rd ed. New-York, Harper & Row, 1983.Suche in Google Scholar
[3] C. Elschenbroich, Organometallchemie, 6. Auflage. Wiesbaden, B. G. Teubner Verlag, 2008.Suche in Google Scholar
[4] A. F. Wells, Structural Inorganic Chemistry, 5th ed. Oxford, Clarendon Press, 1986.Suche in Google Scholar
[5] Y. V. Lomachuk, D. A. Maltsev, N. S. Mosyagin, L. V. Skripnikov, R. V. Bogdanov, and A. V. Titov, “Compound-tunable embedding potential: which oxidation state of uranium and thorium as point defects in xenotime is favorable?,” Phys. Chem. Chem. Phys., vol. 22, no. 32, pp. 17922–17931, 2020. https://doi.org/10.1039/D0CP02277B.Suche in Google Scholar
[6] S. G. Semenov, M. V. Makarova, M. E. Bedrina, and A. V. Titov, “Quantum-chemical modeling of the first coordination sphere of the metal cation in monazite,” Russ. J. Gen. Chem., vol. 89, no. 1, pp. 165–168, 2019. https://doi.org/10.1134/S1070363219010316.Suche in Google Scholar
[7] S. G. Semenov, M. V. Makarova, M. E. Bedrina, and A. V. Titov, “Quantum-chemical model of the minimal cluster in xenotime,” Russ. J. Gen. Chem., vol. 91, no. 3, pp. 389–392, 2021. https://doi.org/10.1134/S1070363221030087.Suche in Google Scholar
[8] S.-H. Cai, Z. Chen, and H.-L. Wan, “Theoretical investigation of 19F NMR chemical shielding of alkaline-earth-metal and alkali-metal fluorides,” J. Phys. Chem. A, vol. 106, no. 6, pp. 1060–1066, 2002. https://doi.org/10.1021/jp013503f.Suche in Google Scholar
[9] M. Body, G. Silly, C. Legein, and J.-Y. Buzare, “Cluster models and ab initio calculations of 19F NMR isotropic chemical shifts for inorganic fluorides,” J. Phys. Chem. B, vol. 109, no. 20, pp. 10270–10278, 2005. https://doi.org/10.1021/jp046763g.Suche in Google Scholar PubMed
[10] V. M. Shakhova, D. A. Maltsev, Y. V. Lomachuk, N. S. Mosyagin, L. V. Skripnikov, and A. V. Titov, “Compound-tunable embedding potential method: analysis of pseudopotentials for Yb in YbF2, YbF3, YbCl2 and YbCl3 crystals,” Phys. Chem. Chem. Phys., vol. 24, no. 32, pp. 19333–19345, 2022. https://doi.org/10.1039/d2cp01738e.Suche in Google Scholar PubMed
[11] R. McWeeny, “Charge densities in conjugated systems,” J. Chem. Phys., vol. 19, no. 12, pp. 1614–1615, 1951. https://doi.org/10.1063/1.1748146.Suche in Google Scholar
[12] R. S. Mulliken, “Electronic population analysis on LCAO–MO molecular wave functions,” J. Chem. Phys., vol. 23, no. 10, pp. 1833–1840, 1955. https://doi.org/10.1063/1.1740588.Suche in Google Scholar
[13] R. Heinzmann and R. Ahlrichs, “Population analysis based on occupation numbers of modified atomic orbitals (MAOs),” Theor. Chim. Acta, vol. 42, pp. 33–45, 1976, https://doi.org/10.1007/BF00548289.Suche in Google Scholar
[14] C. Ehrhardt and R. Ahlrichs, “Population analysis based on occupation numbers II. Relationship between shared electron numbers and bond energies and characterization of hypervalent contributions,” Theor. Chim. Acta, vol. 68, pp. 231–245, 1985, https://doi.org/10.1007/BF00526774.Suche in Google Scholar
[15] T. Takano, H. Hosoya, and S. Iwata, “Analysis of the oxidation state and oxidation number by ab initio molecular orbital calculations: chlorine and sulfur compounds,” J. Am. Chem. Soc., vol. 104, no. 14, pp. 3998–4005, 1982. https://doi.org/10.1021/ja00378a037.Suche in Google Scholar
[16] F. L. Hirshfeld, “Bonded-atom fragments for describing molecular charge densities,” Theor. Chim. Acta, vol. 44, pp. 129–138, 1977, https://doi.org/10.1007/BF00549096.Suche in Google Scholar
[17] A. E. Reed, R. B. Weinstock, and F. Weinhold, “Natural population analysis,” J. Chem. Phys., vol. 83, no. 2, pp. 735–746, 1985. https://doi.org/10.1063/1.449486.Suche in Google Scholar
[18] J. Cioslowski, “A new population analysis based on atomic polar tensors,” J. Am. Chem. Soc., vol. 111, no. 22, pp. 8333–8336, 1989. https://doi.org/10.1021/ja00204a001.Suche in Google Scholar
[19] U. Dinur and A. T. Hagler, “Determination of atomic point charges and point dipoles from the Cartesian derivatives of the molecular dipole moment and second moments, and from energy second derivatives of planar dimers. I. Theory,” J. Chem. Phys., vol. 91, no. 5, pp. 2949–2958, 1989. https://doi.org/10.1063/1.456965.Suche in Google Scholar
[20] U. Dinur, “On the interpretation of infrared intensities in planar molecular systems,” Chem. Phys. Lett., vol. 166, no. 2, pp. 211–216, 1990. https://doi.org/10.1016/0009-2614(90)87277-X.Suche in Google Scholar
[21] S. Huzinaga, Y. Sakai, E. Miyoshi, and S. Narita, “Extended Mulliken electron population analysis,” J. Chem. Phys., vol. 93, no. 5, pp. 3319–3325, 1990. https://doi.org/10.1063/1.458812.Suche in Google Scholar
[22] R. F. W. Bader, Atoms in Molecules: A Quantum Theory, Oxford, Clarendon Press, 1990.10.1093/oso/9780198551683.001.0001Suche in Google Scholar
[23] M. S. Lee and M. Head-Gordon, “Extracting polarized atomic orbitals from molecular orbital calculations,” Int. J. Quantum Chem., vol. 76, no. 2, pp. 169–184, 2000. https://doi.org/10.1002/(SICI)1097-461X(2000)76:2%C2%A1169::AID-QUA7%C2%BF3.0.CO;2-G.10.1002/(SICI)1097-461X(2000)76:2<169::AID-QUA7>3.0.CO;2-GSuche in Google Scholar
[24] M. S. de Giambiagi, M. Giambiagi, and F. E. Jorge, “Some considerations about bond indices in non-orthogonal bases and the MO calculation of valence and oxidation number,” Z. Naturforsch. A, vol. 39, no. 12, pp. 1259–1273, 1984. https://doi.org/10.1515/zna-1984-1220.Suche in Google Scholar
[25] M. Giambiagi, M. Giambiagi, D. R. Grempel, and C. D. Heymann, “Sur la définition d’un indice de liaison (TEV) pour des bases non orthogonales. Propriétés et applications,” J. Chim. Phys., vol. 72, no. 1, pp. 15–22, 1975. https://doi.org/10.1051/jcp/1975720015.Suche in Google Scholar
[26] S. G. Semenov, M. E. Bedrina, V. A. Klemeshev, and A. V. Titov, “Quantum chemical study of X@BikPbm, BikPbm · X, X@SbkSnm, and SbkSnm · X clusters,” Russ. J. Gen. Chem., vol. 91, no. 2, pp. 241–250, 2021. https://doi.org/10.1134/S1070363221020134.Suche in Google Scholar
[27] M. E. Bedrina, S. G. Semenov, M. V. Suyasova, V. P. Sedov, and A. V. Titov, “Highly hydroxylated buckminsterfullerene complexes with an endohedral iodide anion,” J. Phys. Chem. A, vol. 127, no. 30, pp. 6222–6226, 2023. https://doi.org/10.1021/acs.jpca.3c03206.Suche in Google Scholar PubMed
[28] P.-O. Löwdin, “Quantum theory of many-particle systems. I. Physical interpretations by means of density matrices, natural spin-orbitals, and convergence problems in the method of configurational interaction,” Phys. Rev., vol. 97, no. 6, pp. 1474–1489, 1955. https://doi.org/10.1103/PhysRev.97.1474.Suche in Google Scholar
[29] R. McWeeny, “Some recent advances in density matrix theory,” Rev. Mod. Phys., vol. 32, no. 2, pp. 335–369, 1960. https://doi.org/10.1103/RevModPhys.32.335.Suche in Google Scholar
[30] S. G. Semenov, “Localization of MOs and electronic populations in closo-carboranes 1,5-C2B3H5 and 1,6-C2B4H6,” Theor. Exp. Chem., vol. 23, no. 4, pp. 422–427, 1988. https://doi.org/10.1007/BF00536360.Suche in Google Scholar
[31] S. G. Semenov and Y. F. Sigolaev, “Computer modeling of the structure of large molecules: II. Cluster C1500,” Russ. J. Gen. Chem., vol. 76, no. 11, pp. 1732–1737, 2006. https://doi.org/10.1134/S1070363206110107.Suche in Google Scholar
[32] R. Polák, “Optimum hybrid orbitals in localized orbitals,” Int. J. Quantum Chem., vol. 4, no. 3, pp. 271–287, 1970. https://doi.org/10.1002/qua.560040305.Suche in Google Scholar
[33] R. Polák, “Optimum hybrid orbitals in localized orbitals. II. Degenerate case,” Int. J. Quantum Chem., vol. 6, no. 6, pp. 1077–1086, 1972.Suche in Google Scholar
[34] D. Sanchez-Portal, E. Artacho, and J. M. Soler, “Projection of plane-wave calculations into atomic orbitals,” Solid State Commun., vol. 95, no. 10, pp. 685–690, 1995. https://doi.org/10.1016/0038-1098(95)00341-X.Suche in Google Scholar
[35] E. R. Davidson, “Electronic population analysis of molecular wavefunctions,” J. Chem. Phys., vol. 46, no. 9, pp. 3320–3324, 1967. https://doi.org/10.1063/1.1841219.Suche in Google Scholar
[36] P.-O. Löwdin, “On the nonorthogonality problem,” Adv. Quantum Chem., vol. 5, pp. 185–199, 1970, https://doi.org/10.1016/S0065-3276(08)60339-1.Suche in Google Scholar
[37] S. G. Semenov, “On the quantum-chemical description of the atomic valence states on the basis of ab initio SCF MO calculations,” Vestn. Leningr. Univ., vol. 1, no. 4, pp. 66–70, 1991.Suche in Google Scholar
[38] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett., vol. 77, no. 18, pp. 3865–3868, 1996. https://doi.org/10.1103/PhysRevLett.77.3865.Suche in Google Scholar PubMed
[39] C. Adamo and V. Barone, “Toward reliable density functional methods without adjustable parameters: the PBE0 model,” J. Chem. Phys., vol. 110, no. 13, pp. 6158–6170, 1999. https://doi.org/10.1063/1.478522.Suche in Google Scholar
[40] M. J. Frisch, et al.., Gaussian 09, Rev. D.01, Wallingford CT, Gaussian, Inc., 2013.Suche in Google Scholar
[41] J. Tomasi and M. Persico, “Molecular interactions in solution: an overview of methods based on continuous distributions of the solvent,” Chem. Rev., vol. 94, no. 7, pp. 2027–2094, 1994. https://doi.org/10.1021/cr00031a013.Suche in Google Scholar
[42] J. Tomasi, B. Mennucci, and R. Cammi, “Quantum mechanical continuum solvation models,” Chem. Rev., vol. 105, no. 8, pp. 2999–3093, 2005. https://doi.org/10.1021/cr9904009.Suche in Google Scholar PubMed
[43] C. Knapp, et al.., “Electron paramagnetic resonance study of atomic phosphorus encapsulated in [60]fullerene,” Mol. Phys., vol. 95, no. 5, pp. 999–1004, 1998. https://doi.org/10.1080/00268979809483233.Suche in Google Scholar
[44] L. Tsetseris, “Stability of group-V endohedral fullerenes,” J. Phys. Chem. C, vol. 115, no. 9, pp. 3528–3533, 2011. https://doi.org/10.1021/jp108277v.Suche in Google Scholar
[45] S. G. Semenov and M. V. Makarova, “Quantum chemical study Ca@C60 and Sc+@C60 endo complexes in the gas phase and pyridine,” Russ. J. Gen. Chem., vol. 85, no. 4, pp. 889–893, 2015. https://doi.org/10.1134/S1070363215040210.Suche in Google Scholar
[46] C. A. Reed, “Carboranes: a new class of weakly coordinating anions for strong electrophiles, oxidants, and superacids,” Acc. Chem. Res., vol. 31, no. 3, pp. 133–139, 1998. https://doi.org/10.1021/ar970230r.Suche in Google Scholar
[47] C. A. Reed, K.-C. Kim, R. D. Bolskar, and L. J. Mueller, “Taming superacids: stabilization of the fullerene cations HC60+${\mathrm{H}{\mathrm{C}}_{\mathrm{60}}}^{+}$ and C60⋅+${{\mathrm{C}}_{\mathrm{60}}}^{\cdot +}$,” Science, vol. 289, no. 5476, pp. 101–104, 2000, https://doi.org/10.1126/science.289.5476.101.Suche in Google Scholar PubMed
[48] L. C. O’Brien and P. F. Bernath, “Laser spectroscopy of calcium and strontium monocyclopentadienide,” J. Am. Chem. Soc., vol. 108, no. 16, pp. 5017–5018, 1986. https://doi.org/10.1021/ja00276a058.Suche in Google Scholar
[49] E. S. J. Robles, A. M. Ellis, and T. A. Miller, “Electronic spectroscopy of jet-cooled half-sandwich organometallic complexes CaC5H5, CaC5H4CH3, and CaC4H4N,” J. Am. Chem. Soc., vol. 114, no. 18, pp. 7171–7183, 1992. https://doi.org/10.1021/ja00044a033.Suche in Google Scholar
[50] V. Zhelyazkova, et al.., “Laser cooling and slowing of CaF molecules,” Phys. Rev. A, vol. 89, 2014, Art. no. 053416, https://doi.org/10.1103/PhysRevA.89.053416.Suche in Google Scholar
[51] B. Hemmerling, et al.., “Laser slowing of CaF molecules to near the capture velocity of a molecular MOT,” J. Phys. B: At. Mol. Opt. Phys., vol. 49, 2016, Art. no. 174001, https://doi.org/10.1088/0953-4075/49/17/174001.Suche in Google Scholar
[52] T. Isaev and R. Berger, “Polyatomic candidates for cooling of molecules with lasers from simple theoretical concepts,” Phys. Rev. Lett., vol. 116, 2016, Art. no. 063006, https://doi.org/10.1103/PhysRevLett.116.063006.Suche in Google Scholar PubMed
[53] I. Kozyryev, L. Baum, K. Matsuda, and J. M. Doyle, “Proposal for laser cooling of complex polyatomic molecules,” ChemPhysChem, vol. 17, no. 22, pp. 3641–3648, 2016. https://doi.org/10.1002/cphc.201601051.Suche in Google Scholar PubMed
[54] E. A. Robinson, “The duodecet rule: part 1. Valence bond structures of oxo and azo species of Si(IV), P(V), S(VI), and Cl(VII),” J. Mol. Struct. Theochem, vol. 186, pp. 9–28, 1989, https://doi.org/10.1016/0166-1280(89)87035-6.Suche in Google Scholar
[55] K. R. Roby, “Quantum theory of chemical valence concepts. I. Definition of the charge on an atom in a molecule and of occupation numbers for electron density shared between atoms,” Mol. Phys., vol. 27, no. 1, pp. 81–104, 1974. https://doi.org/10.1080/00268977400100071.Suche in Google Scholar
[56] D. W. J. Cruickshank and E. J. Avramides, “The interpretation of molecular wave functions: the development and application of Roby’s method for electron population analysis,” Phil. Trans. R. Soc. Lond. A, vol. 304, no. 1488, pp. 533–565, 1982. https://doi.org/10.1098/rsta.1982.0020.Suche in Google Scholar
[57] S. G. Semenov, “Additive overlap populations of atomic orbitals,” J. Struct. Chem., vol. 41, no. 1, pp. 19–27, 2000. https://doi.org/10.1007/BF02684723.Suche in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Atomic, Molecular & Optical Physics
- Quantum chemical concept of oxidation states
- Dynamical Systems & Nonlinear Phenomena
- Comparative study of novel solitary wave solutions with unveiling bifurcation and chaotic structure modelled by stochastic dynamical system
- Fundamental Concepts of Physical Science
- Fermi motion in nucleons and the generalized Heisenberg uncertainty relation
- Hydrodynamics & Plasma Physics
- Stability and convection in compressible partially ionized plasma layers: nonlinear and linear analysis
- Solid State Physics & Materials Science
- Effective medium theory of a concentric metamaterial bifunctional cloak
- Morphological impact on energy storage properties of 2D-MoS2 and its nanocomposites: a comprehensive review
- Exploring the implications of CoCrFeNiCu high entropy alloy coatings on tribomechanical, wetting behavior, and interfacial microstructural characterizations in microwave-clad AISI 304 stainless steels
Artikel in diesem Heft
- Frontmatter
- Atomic, Molecular & Optical Physics
- Quantum chemical concept of oxidation states
- Dynamical Systems & Nonlinear Phenomena
- Comparative study of novel solitary wave solutions with unveiling bifurcation and chaotic structure modelled by stochastic dynamical system
- Fundamental Concepts of Physical Science
- Fermi motion in nucleons and the generalized Heisenberg uncertainty relation
- Hydrodynamics & Plasma Physics
- Stability and convection in compressible partially ionized plasma layers: nonlinear and linear analysis
- Solid State Physics & Materials Science
- Effective medium theory of a concentric metamaterial bifunctional cloak
- Morphological impact on energy storage properties of 2D-MoS2 and its nanocomposites: a comprehensive review
- Exploring the implications of CoCrFeNiCu high entropy alloy coatings on tribomechanical, wetting behavior, and interfacial microstructural characterizations in microwave-clad AISI 304 stainless steels