Home Quantum chemical concept of oxidation states
Article
Licensed
Unlicensed Requires Authentication

Quantum chemical concept of oxidation states

  • Sergey G. Semenov , Marina E. Bedrina and Vladimir A. Klemeshev EMAIL logo
Published/Copyright: March 7, 2025

Abstract

The concept of the oxidation state of an atom in a chemical compound is formulated in terms of the quantum theory of many-electron systems and illustrated by calculations of oxidation numbers of calcium(I, II), phosphorus(0–V), sulfur(0–VI), fluorine(–I), oxygen(–II), and krypton(0) in CaCB11H6Cl6, CaCB11H12, CaC5H5, C a ( C 5 H 5 ) 2 , Ca@C60, P@C60, PF, PF3, PF5, POF3, P4O6, P4O10, SO, OSSO, SO2, SF2, SF4, SF6, SOF4, SO2F2, S3O9, and Kr@C60 molecules. In [ P O 4 ] 3 @ a q u a , [ P 3 O 9 ] 3 @ a q u a , [ P F 6 ] @ a q u a , [ S O 3 ] 2 @ a q u a , and [ S O 4 ] 2 @ a q u a ions, high oxidation states of phosphorus(V) and sulfur(IV, VI) are realized.


Corresponding author: Vladimir A. Klemeshev, Saint Petersburg State University, St. Petersburg 199034, Russia, E-mail: 

Award Identifier / Grant number: Grant No. 20-13-00225

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: The authors are very grateful to the Russian Science Foundation (Grant No. 20-13-00225).

  7. Data availability: Not applicable.

References

[1] C. K. Jørgensen, Oxidation Numbers and Oxidation States, Berlin, Springer-Verlag, 1969.10.1007/978-3-642-87758-2Search in Google Scholar

[2] J. E. Huheey, Inorganic Chemistry. Principles of Structure and Reactivity, 3rd ed. New-York, Harper & Row, 1983.Search in Google Scholar

[3] C. Elschenbroich, Organometallchemie, 6. Auflage. Wiesbaden, B. G. Teubner Verlag, 2008.Search in Google Scholar

[4] A. F. Wells, Structural Inorganic Chemistry, 5th ed. Oxford, Clarendon Press, 1986.Search in Google Scholar

[5] Y. V. Lomachuk, D. A. Maltsev, N. S. Mosyagin, L. V. Skripnikov, R. V. Bogdanov, and A. V. Titov, “Compound-tunable embedding potential: which oxidation state of uranium and thorium as point defects in xenotime is favorable?,” Phys. Chem. Chem. Phys., vol. 22, no. 32, pp. 17922–17931, 2020. https://doi.org/10.1039/D0CP02277B.Search in Google Scholar

[6] S. G. Semenov, M. V. Makarova, M. E. Bedrina, and A. V. Titov, “Quantum-chemical modeling of the first coordination sphere of the metal cation in monazite,” Russ. J. Gen. Chem., vol. 89, no. 1, pp. 165–168, 2019. https://doi.org/10.1134/S1070363219010316.Search in Google Scholar

[7] S. G. Semenov, M. V. Makarova, M. E. Bedrina, and A. V. Titov, “Quantum-chemical model of the minimal cluster in xenotime,” Russ. J. Gen. Chem., vol. 91, no. 3, pp. 389–392, 2021. https://doi.org/10.1134/S1070363221030087.Search in Google Scholar

[8] S.-H. Cai, Z. Chen, and H.-L. Wan, “Theoretical investigation of 19F NMR chemical shielding of alkaline-earth-metal and alkali-metal fluorides,” J. Phys. Chem. A, vol. 106, no. 6, pp. 1060–1066, 2002. https://doi.org/10.1021/jp013503f.Search in Google Scholar

[9] M. Body, G. Silly, C. Legein, and J.-Y. Buzare, “Cluster models and ab initio calculations of 19F NMR isotropic chemical shifts for inorganic fluorides,” J. Phys. Chem. B, vol. 109, no. 20, pp. 10270–10278, 2005. https://doi.org/10.1021/jp046763g.Search in Google Scholar PubMed

[10] V. M. Shakhova, D. A. Maltsev, Y. V. Lomachuk, N. S. Mosyagin, L. V. Skripnikov, and A. V. Titov, “Compound-tunable embedding potential method: analysis of pseudopotentials for Yb in YbF2, YbF3, YbCl2 and YbCl3 crystals,” Phys. Chem. Chem. Phys., vol. 24, no. 32, pp. 19333–19345, 2022. https://doi.org/10.1039/d2cp01738e.Search in Google Scholar PubMed

[11] R. McWeeny, “Charge densities in conjugated systems,” J. Chem. Phys., vol. 19, no. 12, pp. 1614–1615, 1951. https://doi.org/10.1063/1.1748146.Search in Google Scholar

[12] R. S. Mulliken, “Electronic population analysis on LCAO–MO molecular wave functions,” J. Chem. Phys., vol. 23, no. 10, pp. 1833–1840, 1955. https://doi.org/10.1063/1.1740588.Search in Google Scholar

[13] R. Heinzmann and R. Ahlrichs, “Population analysis based on occupation numbers of modified atomic orbitals (MAOs),” Theor. Chim. Acta, vol. 42, pp. 33–45, 1976, https://doi.org/10.1007/BF00548289.Search in Google Scholar

[14] C. Ehrhardt and R. Ahlrichs, “Population analysis based on occupation numbers II. Relationship between shared electron numbers and bond energies and characterization of hypervalent contributions,” Theor. Chim. Acta, vol. 68, pp. 231–245, 1985, https://doi.org/10.1007/BF00526774.Search in Google Scholar

[15] T. Takano, H. Hosoya, and S. Iwata, “Analysis of the oxidation state and oxidation number by ab initio molecular orbital calculations: chlorine and sulfur compounds,” J. Am. Chem. Soc., vol. 104, no. 14, pp. 3998–4005, 1982. https://doi.org/10.1021/ja00378a037.Search in Google Scholar

[16] F. L. Hirshfeld, “Bonded-atom fragments for describing molecular charge densities,” Theor. Chim. Acta, vol. 44, pp. 129–138, 1977, https://doi.org/10.1007/BF00549096.Search in Google Scholar

[17] A. E. Reed, R. B. Weinstock, and F. Weinhold, “Natural population analysis,” J. Chem. Phys., vol. 83, no. 2, pp. 735–746, 1985. https://doi.org/10.1063/1.449486.Search in Google Scholar

[18] J. Cioslowski, “A new population analysis based on atomic polar tensors,” J. Am. Chem. Soc., vol. 111, no. 22, pp. 8333–8336, 1989. https://doi.org/10.1021/ja00204a001.Search in Google Scholar

[19] U. Dinur and A. T. Hagler, “Determination of atomic point charges and point dipoles from the Cartesian derivatives of the molecular dipole moment and second moments, and from energy second derivatives of planar dimers. I. Theory,” J. Chem. Phys., vol. 91, no. 5, pp. 2949–2958, 1989. https://doi.org/10.1063/1.456965.Search in Google Scholar

[20] U. Dinur, “On the interpretation of infrared intensities in planar molecular systems,” Chem. Phys. Lett., vol. 166, no. 2, pp. 211–216, 1990. https://doi.org/10.1016/0009-2614(90)87277-X.Search in Google Scholar

[21] S. Huzinaga, Y. Sakai, E. Miyoshi, and S. Narita, “Extended Mulliken electron population analysis,” J. Chem. Phys., vol. 93, no. 5, pp. 3319–3325, 1990. https://doi.org/10.1063/1.458812.Search in Google Scholar

[22] R. F. W. Bader, Atoms in Molecules: A Quantum Theory, Oxford, Clarendon Press, 1990.10.1093/oso/9780198551683.001.0001Search in Google Scholar

[23] M. S. Lee and M. Head-Gordon, “Extracting polarized atomic orbitals from molecular orbital calculations,” Int. J. Quantum Chem., vol. 76, no. 2, pp. 169–184, 2000. https://doi.org/10.1002/(SICI)1097-461X(2000)76:2%C2%A1169::AID-QUA7%C2%BF3.0.CO;2-G.10.1002/(SICI)1097-461X(2000)76:2<169::AID-QUA7>3.0.CO;2-GSearch in Google Scholar

[24] M. S. de Giambiagi, M. Giambiagi, and F. E. Jorge, “Some considerations about bond indices in non-orthogonal bases and the MO calculation of valence and oxidation number,” Z. Naturforsch. A, vol. 39, no. 12, pp. 1259–1273, 1984. https://doi.org/10.1515/zna-1984-1220.Search in Google Scholar

[25] M. Giambiagi, M. Giambiagi, D. R. Grempel, and C. D. Heymann, “Sur la définition d’un indice de liaison (TEV) pour des bases non orthogonales. Propriétés et applications,” J. Chim. Phys., vol. 72, no. 1, pp. 15–22, 1975. https://doi.org/10.1051/jcp/1975720015.Search in Google Scholar

[26] S. G. Semenov, M. E. Bedrina, V. A. Klemeshev, and A. V. Titov, “Quantum chemical study of X@BikPbm, BikPbm · X, X@SbkSnm, and SbkSnm · X clusters,” Russ. J. Gen. Chem., vol. 91, no. 2, pp. 241–250, 2021. https://doi.org/10.1134/S1070363221020134.Search in Google Scholar

[27] M. E. Bedrina, S. G. Semenov, M. V. Suyasova, V. P. Sedov, and A. V. Titov, “Highly hydroxylated buckminsterfullerene complexes with an endohedral iodide anion,” J. Phys. Chem. A, vol. 127, no. 30, pp. 6222–6226, 2023. https://doi.org/10.1021/acs.jpca.3c03206.Search in Google Scholar PubMed

[28] P.-O. Löwdin, “Quantum theory of many-particle systems. I. Physical interpretations by means of density matrices, natural spin-orbitals, and convergence problems in the method of configurational interaction,” Phys. Rev., vol. 97, no. 6, pp. 1474–1489, 1955. https://doi.org/10.1103/PhysRev.97.1474.Search in Google Scholar

[29] R. McWeeny, “Some recent advances in density matrix theory,” Rev. Mod. Phys., vol. 32, no. 2, pp. 335–369, 1960. https://doi.org/10.1103/RevModPhys.32.335.Search in Google Scholar

[30] S. G. Semenov, “Localization of MOs and electronic populations in closo-carboranes 1,5-C2B3H5 and 1,6-C2B4H6,” Theor. Exp. Chem., vol. 23, no. 4, pp. 422–427, 1988. https://doi.org/10.1007/BF00536360.Search in Google Scholar

[31] S. G. Semenov and Y. F. Sigolaev, “Computer modeling of the structure of large molecules: II. Cluster C1500,” Russ. J. Gen. Chem., vol. 76, no. 11, pp. 1732–1737, 2006. https://doi.org/10.1134/S1070363206110107.Search in Google Scholar

[32] R. Polák, “Optimum hybrid orbitals in localized orbitals,” Int. J. Quantum Chem., vol. 4, no. 3, pp. 271–287, 1970. https://doi.org/10.1002/qua.560040305.Search in Google Scholar

[33] R. Polák, “Optimum hybrid orbitals in localized orbitals. II. Degenerate case,” Int. J. Quantum Chem., vol. 6, no. 6, pp. 1077–1086, 1972.Search in Google Scholar

[34] D. Sanchez-Portal, E. Artacho, and J. M. Soler, “Projection of plane-wave calculations into atomic orbitals,” Solid State Commun., vol. 95, no. 10, pp. 685–690, 1995. https://doi.org/10.1016/0038-1098(95)00341-X.Search in Google Scholar

[35] E. R. Davidson, “Electronic population analysis of molecular wavefunctions,” J. Chem. Phys., vol. 46, no. 9, pp. 3320–3324, 1967. https://doi.org/10.1063/1.1841219.Search in Google Scholar

[36] P.-O. Löwdin, “On the nonorthogonality problem,” Adv. Quantum Chem., vol. 5, pp. 185–199, 1970, https://doi.org/10.1016/S0065-3276(08)60339-1.Search in Google Scholar

[37] S. G. Semenov, “On the quantum-chemical description of the atomic valence states on the basis of ab initio SCF MO calculations,” Vestn. Leningr. Univ., vol. 1, no. 4, pp. 66–70, 1991.Search in Google Scholar

[38] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett., vol. 77, no. 18, pp. 3865–3868, 1996. https://doi.org/10.1103/PhysRevLett.77.3865.Search in Google Scholar PubMed

[39] C. Adamo and V. Barone, “Toward reliable density functional methods without adjustable parameters: the PBE0 model,” J. Chem. Phys., vol. 110, no. 13, pp. 6158–6170, 1999. https://doi.org/10.1063/1.478522.Search in Google Scholar

[40] M. J. Frisch, et al.., Gaussian 09, Rev. D.01, Wallingford CT, Gaussian, Inc., 2013.Search in Google Scholar

[41] J. Tomasi and M. Persico, “Molecular interactions in solution: an overview of methods based on continuous distributions of the solvent,” Chem. Rev., vol. 94, no. 7, pp. 2027–2094, 1994. https://doi.org/10.1021/cr00031a013.Search in Google Scholar

[42] J. Tomasi, B. Mennucci, and R. Cammi, “Quantum mechanical continuum solvation models,” Chem. Rev., vol. 105, no. 8, pp. 2999–3093, 2005. https://doi.org/10.1021/cr9904009.Search in Google Scholar PubMed

[43] C. Knapp, et al.., “Electron paramagnetic resonance study of atomic phosphorus encapsulated in [60]fullerene,” Mol. Phys., vol. 95, no. 5, pp. 999–1004, 1998. https://doi.org/10.1080/00268979809483233.Search in Google Scholar

[44] L. Tsetseris, “Stability of group-V endohedral fullerenes,” J. Phys. Chem. C, vol. 115, no. 9, pp. 3528–3533, 2011. https://doi.org/10.1021/jp108277v.Search in Google Scholar

[45] S. G. Semenov and M. V. Makarova, “Quantum chemical study Ca@C60 and Sc+@C60 endo complexes in the gas phase and pyridine,” Russ. J. Gen. Chem., vol. 85, no. 4, pp. 889–893, 2015. https://doi.org/10.1134/S1070363215040210.Search in Google Scholar

[46] C. A. Reed, “Carboranes: a new class of weakly coordinating anions for strong electrophiles, oxidants, and superacids,” Acc. Chem. Res., vol. 31, no. 3, pp. 133–139, 1998. https://doi.org/10.1021/ar970230r.Search in Google Scholar

[47] C. A. Reed, K.-C. Kim, R. D. Bolskar, and L. J. Mueller, “Taming superacids: stabilization of the fullerene cations HC60+${\mathrm{H}{\mathrm{C}}_{\mathrm{60}}}^{+}$ and C60⋅+${{\mathrm{C}}_{\mathrm{60}}}^{\cdot +}$,” Science, vol. 289, no. 5476, pp. 101–104, 2000, https://doi.org/10.1126/science.289.5476.101.Search in Google Scholar PubMed

[48] L. C. O’Brien and P. F. Bernath, “Laser spectroscopy of calcium and strontium monocyclopentadienide,” J. Am. Chem. Soc., vol. 108, no. 16, pp. 5017–5018, 1986. https://doi.org/10.1021/ja00276a058.Search in Google Scholar

[49] E. S. J. Robles, A. M. Ellis, and T. A. Miller, “Electronic spectroscopy of jet-cooled half-sandwich organometallic complexes CaC5H5, CaC5H4CH3, and CaC4H4N,” J. Am. Chem. Soc., vol. 114, no. 18, pp. 7171–7183, 1992. https://doi.org/10.1021/ja00044a033.Search in Google Scholar

[50] V. Zhelyazkova, et al.., “Laser cooling and slowing of CaF molecules,” Phys. Rev. A, vol. 89, 2014, Art. no. 053416, https://doi.org/10.1103/PhysRevA.89.053416.Search in Google Scholar

[51] B. Hemmerling, et al.., “Laser slowing of CaF molecules to near the capture velocity of a molecular MOT,” J. Phys. B: At. Mol. Opt. Phys., vol. 49, 2016, Art. no. 174001, https://doi.org/10.1088/0953-4075/49/17/174001.Search in Google Scholar

[52] T. Isaev and R. Berger, “Polyatomic candidates for cooling of molecules with lasers from simple theoretical concepts,” Phys. Rev. Lett., vol. 116, 2016, Art. no. 063006, https://doi.org/10.1103/PhysRevLett.116.063006.Search in Google Scholar PubMed

[53] I. Kozyryev, L. Baum, K. Matsuda, and J. M. Doyle, “Proposal for laser cooling of complex polyatomic molecules,” ChemPhysChem, vol. 17, no. 22, pp. 3641–3648, 2016. https://doi.org/10.1002/cphc.201601051.Search in Google Scholar PubMed

[54] E. A. Robinson, “The duodecet rule: part 1. Valence bond structures of oxo and azo species of Si(IV), P(V), S(VI), and Cl(VII),” J. Mol. Struct. Theochem, vol. 186, pp. 9–28, 1989, https://doi.org/10.1016/0166-1280(89)87035-6.Search in Google Scholar

[55] K. R. Roby, “Quantum theory of chemical valence concepts. I. Definition of the charge on an atom in a molecule and of occupation numbers for electron density shared between atoms,” Mol. Phys., vol. 27, no. 1, pp. 81–104, 1974. https://doi.org/10.1080/00268977400100071.Search in Google Scholar

[56] D. W. J. Cruickshank and E. J. Avramides, “The interpretation of molecular wave functions: the development and application of Roby’s method for electron population analysis,” Phil. Trans. R. Soc. Lond. A, vol. 304, no. 1488, pp. 533–565, 1982. https://doi.org/10.1098/rsta.1982.0020.Search in Google Scholar

[57] S. G. Semenov, “Additive overlap populations of atomic orbitals,” J. Struct. Chem., vol. 41, no. 1, pp. 19–27, 2000. https://doi.org/10.1007/BF02684723.Search in Google Scholar

Received: 2025-01-17
Accepted: 2025-02-17
Published Online: 2025-03-07
Published in Print: 2025-04-28

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 1.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zna-2025-0020/html
Scroll to top button