Startseite Nambu Jona-Lasinio model of relativistic superconductivity
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Nambu Jona-Lasinio model of relativistic superconductivity

  • Stanley A. Bruce ORCID logo EMAIL logo
Veröffentlicht/Copyright: 18. Oktober 2023

Abstract

We propose a Nambu Jona-Lasinio (NJL) effective model of relativistic superconductivity. In this framework, we discuss possible electromagnetic (EM) behaviors of (specifically) type-II superconductivity in line with the nonrelativistic Ginzburg–Landau (GL) theory. We comment on possible solitonic solutions of this model. Our investigation could be of relevance to describe type-II proton superconductivity in neutron-star crusts.


Corresponding author: Stanley A. Bruce, Complex Systems Group, Facultad de Ingenieria y Ciencias Aplicadas, Universidad de Los Andes, Santiago, Chile, E-mail: .

Funding source: Universidad de los Andes

Award Identifier / Grant number: FAI 12.20

  1. Research ethics: Not applicable.

  2. Author contributions: The author has accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The author states no conflict of interest.

  4. Research funding: This work was supported by Universidad de Los Andes, Santiago, Chile, through grant FAI 12.20.

  5. Data availability: Not applicable.

References

[1] D. Culcer, A. C. Keser, Y. Li, and G. Tkachov, “Transport in two-dimensional topological materials: recent developments in experiment and theory,” 2D Mater., vol. 7, p. 022007, 2020. https://doi.org/10.1088/2053-1583/ab6ff7.Suche in Google Scholar

[2] A. Jellal, A. D. Alhaidari, and H. Bahlouli, “Confined Dirac fermions in a constant magnetic field,” Phys. Rev. A, vol. 80, p. 012109, 2009. https://doi.org/10.1103/physreva.80.012109.Suche in Google Scholar

[3] B. Sacépé, M. Feigel’man, and T. M. Klapwijk, “Quantum breakdown of superconductivity in low-dimensional materials,” Nat. Phys., vol. 16, p. 734, 2020. https://doi.org/10.1038/s41567-020-0905-x.Suche in Google Scholar

[4] Y. Ueno, A. Yamakage, Y. Tanaka, and M. Sato, “Symmetry-protected Majorana fermions in topological crystalline superconductors: theory and application to Sr2RuO4,” Phys. Rev. Lett., vol. 111, p. 087002, 2013. https://doi.org/10.1103/physrevlett.111.087002.Suche in Google Scholar PubMed

[5] F. Loder, A. Kampf, and T. Kopp, “Route to topological superconductivity via magnetic field rotation,” Sci. Rep., vol. 5, p. 15302, 2015. https://doi.org/10.1038/srep15302.Suche in Google Scholar PubMed PubMed Central

[6] Y. Ren, Z. Qiao, and Q. Niu, “Topological phases in two-dimensional materials: a review,” Rep. Prog. Phys., vol. 79, p. 066501, 2016. https://doi.org/10.1088/0034-4885/79/6/066501.Suche in Google Scholar PubMed

[7] J. Avila, F. Pearanda, E. Prada, P. San-Jose, and R. Aguado, “Non-hermitian topology as a unifying framework for the Andreev versus Majorana states controversy,” Commun. Phys., vol. 2, p. 133, 2019. https://doi.org/10.1038/s42005-019-0231-8.Suche in Google Scholar

[8] A. A. Zyuzin and A. A. Burkov, “Topological response in Weyl semimetals and the chiral anomaly,” Phys. Rev. B, vol. 86, p. 115133, 2012. https://doi.org/10.1103/physrevb.86.115133.Suche in Google Scholar

[9] Y. Chen, S. Wu, and A. A. Burkov, “Axion response in Weyl semimetals,” Phys. Rev. B, vol. 88, p. 125105, 2013. https://doi.org/10.1103/physrevb.88.125105.Suche in Google Scholar

[10] P. Goswami and S. Tewari, “Axionic field theory of (3+1)-dimensional Weyl semimetals,” Phys. Rev. B, vol. 88, p. 245107, 2013. https://doi.org/10.1103/physrevb.88.245107.Suche in Google Scholar

[11] C. L. Kane and E. J. Mele, “Z2 topological order and the quantum spin Hall effect,” Phys. Rev. Lett., vol. 95, p. 146802, 2005. https://doi.org/10.1103/physrevlett.95.146802.Suche in Google Scholar

[12] M. Frachet, I. Vinograd, R. Zhou, et al.., “Hidden magnetism at the pseudogap critical point of a cuprate superconductor,” Nat. Phys., vol. 16, p. 1064, 2020. https://doi.org/10.1038/s41567-020-0950-5.Suche in Google Scholar

[13] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Microscopic theory of superconductivity,” Phys. Rev., vol. 106, p. 162, 1957, Phys. Rev., vol. 108, p. 1175, 1957. https://doi.org/10.1103/physrev.106.162.Suche in Google Scholar

[14] L. N. Cooper, “Bound electron pairs in a degenerate fermi gas,” Phys. Rev., vol. 104, p. 1189, 1956. https://doi.org/10.1103/physrev.104.1189.Suche in Google Scholar

[15] V. L. Ginzburg and L. D. Landau, “On the theory of superconductivity,” Sov. Phys. JETP, vol. 20, p. 1064, 1950.Suche in Google Scholar

[16] A. A. Abrikosov, “On the properties of super conductors of the second group,” Sov. Phys. JETP, vol. 5, p. 1174, 1957.Suche in Google Scholar

[17] D. Bailin and A. Love, “Superconductivity for relativistic electrons,” J. Phys. A: Math. Gen., vol. 15, p. 3001, 1982. https://doi.org/10.1088/0305-4470/15/9/046.Suche in Google Scholar

[18] K. Capelle and E. K. U. Gross, “Relativistic theory of superconductivity,” Phys. Lett. A, vol. 198, p. 261, 1995. https://doi.org/10.1016/0375-9601(94)01010-r.Suche in Google Scholar

[19] P. J. Wong and A. V. Balatsky, “Appearance of odd-frequency superconductivity in a relativistic scenario,” Phys. Rev. B, vol. 108, p. 014510, 2023. https://doi.org/10.1103/physrevb.108.014510.Suche in Google Scholar

[20] J. Deng, J. Wang, and Q. Wang, “BCS-BEC crossover in a relativistic boson-fermion model beyond mean field approximation,” Phys. Rev. D, vol. 78, p. 034014, 2008. https://doi.org/10.1103/physrevd.78.034014.Suche in Google Scholar

[21] A. J. Beekman and J. Zaanen, “Electrodynamics of Abrikosov vortices: the field theoretical formulation,” Front. Phys., vol. 6, p. 357, 2011. https://doi.org/10.1007/s11467-011-0205-0.Suche in Google Scholar

[22] A. J. Beekman, D. Sadri, and J. Zaanen, “Condensing Nielsen–Olesen strings and the vortex–boson duality in 3+1 and higher dimensions,” New J. Phys., vol. 13, p. 033004, 2011. https://doi.org/10.1088/1367-2630/13/3/033004.Suche in Google Scholar

[23] S. Mukherjee and A. Lahiri, “Emergent vortex–electron interaction from dualization,” Ann. Phys., vol. 418, p. 168167, 2020. https://doi.org/10.1016/j.aop.2020.168167.Suche in Google Scholar

[24] S. A. Bruce, “Model of relativistic superconductivity,” Int. J. Mod. Phys. B, 2023, https://doi.org/10.1142/S0217979224502710.Suche in Google Scholar

[25] M. Alford, J. Bowers, and K. Rajagopal, “Colour superconductivity in compact stars,” J. Phys. G: Nucl. Part. Phys., vol. 27, p. 541, 2001. https://doi.org/10.1088/0954-3899/27/3/335.Suche in Google Scholar

[26] L. A. Kondratyuk, M. M. Giannini, and M. I. Krivoruchenko, “The SU(2) colour superconductivity,” Phys. Lett. B, vol. 269, p. 139, 1991, “Superconducting quark matter in SU(2) colour group,” Z. Phys. A, vol. 344, p. 99, 1992.10.1016/0370-2693(91)91465-8Suche in Google Scholar

[27] M. Alford, K. Rajagopal, and F. Wilczek, “QCD at finite baryon density: nucleon droplets and color superconductivity,” Phys. Lett. B, vol. 422, p. 247, 1998. https://doi.org/10.1016/s0370-2693(98)00051-3.Suche in Google Scholar

[28] M. Iwasaki and T. Iwado, “Superconductivity in quark matter,” Phys. Lett. B, vol. 350, p. 163, 1995. https://doi.org/10.1016/0370-2693(95)00322-c.Suche in Google Scholar

[29] (a) T. Ohsaku, Phys. Rev. B, vol. 65, p. 024512, 2001. (b) T. Ohsaku, “BCS and generalized BCS superconductivity in relativistic quantum field theory: formulation,” Phys. Lett. B, vol. 634, p. 285, 2006.Suche in Google Scholar

[30] R. Anglani, R. Casalbuoni, M. Ciminale, et al.., “Crystalline color superconductors,” Rev. Mod. Phys., vol. 86, p. 509, 2014. https://doi.org/10.1103/revmodphys.86.509.Suche in Google Scholar

[31] D. D. Ivanenko, “Notes to the theory of interaction via particles,” Sov. Phys. JETP, vol. 13, p. 141, 1938.Suche in Google Scholar

[32] M. Soler, “Classical, stable, nonlinear spinor field with positive rest energy,” Phys. Rev. D, vol. 1, p. 2766, 1970. https://doi.org/10.1103/physrevd.1.2766.Suche in Google Scholar

[33] D. J. Gross and A. Neveu, “Dynamical symmetry breaking in asymptotically free field theories,” Phys. Rev. D, vol. 10, p. 3235, 1974. https://doi.org/10.1103/physrevd.10.3235.Suche in Google Scholar

[34] R. Finkelstein, R. Lelevier, and M. Ruderman, “Nonlinear spinor fields,” Phys. Rev., vol. 83, p. 326, 1951. https://doi.org/10.1103/physrev.83.326.Suche in Google Scholar

[35] W. Heisenberg, “Zur Quantentheorie nichtrenormierbarer Wellengleichungen,” Z. Naturforsch. A, vol. 9, p. 292, 1954. https://doi.org/10.1515/zna-1954-0406.Suche in Google Scholar

[36] W. Thirring, “A soluble relativistic field theory,” Ann. Phys., vol. 3, p. 91, 1958. https://doi.org/10.1016/0003-4916(58)90015-0.Suche in Google Scholar

[37] S. Weinberg, “Implications of dynamical symmetry breaking,” Phys. Rev. D, vol. 13, p. 974, 1976. https://doi.org/10.1103/physrevd.13.974.Suche in Google Scholar

[38] K. Kondo, “Bosonization and duality of massive Thirring model,” Prog. Theor. Phys., vol. 94, p. 899, 1995.10.1143/PTP.94.899Suche in Google Scholar

[39] V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge, Cambridge U. P., 1993.10.1017/CBO9780511628832Suche in Google Scholar

[40] Y. Nogami and F. M. Toyama, “Transparent potential for the one-dimensional Dirac equation,” Phys. Rev. A, vol. 45, p. 5258, 1992. https://doi.org/10.1103/physreva.45.5258.Suche in Google Scholar PubMed

[41] C. R. Hagen, “New solutions of the thirring model,” Il Nuovo Cimento B, vol. 51, p. 169, 1967. https://doi.org/10.1007/bf02712329.Suche in Google Scholar

[42] J. I. Cirac, P. Maraner, and J. K. Pachos, “Cold atom simulation of interacting relativistic quantum field theories,” Phys. Rev. Lett., vol. 105, p. 190403, 2010. https://doi.org/10.1103/physrevlett.105.190403.Suche in Google Scholar PubMed

[43] S. Coleman, “Quantum sine-Gordon equation as the massive Thirring model,” Phys. Rev. D, vol. 11, p. 2088, 1975. https://doi.org/10.1103/physrevd.11.2088.Suche in Google Scholar

[44] S. A. Bruce, “Magnetically confined electrons and the Nambu–Jona-Lasinio model,” Eur. Phys. J. Plus, vol. 136, p. 498, 2021. https://doi.org/10.1140/epjp/s13360-021-01502-z.Suche in Google Scholar

[45(a)] S. A. Bruce and J. F. Diaz-Valdes, “2D self-interacting magnetically confined electrons,” Phys. Scr., vol. 96, p. 075004, 2021. https://doi.org/10.1088/1402-4896/abde0b.Suche in Google Scholar

(b) S. A. Bruce, “Remarks on the Dirac Kepler/Coulomb problem with a space-dependent mass term,” Phys. Scr., vol. 96, p. 125303, 2021.10.1088/1402-4896/ac1a4bSuche in Google Scholar

[46] S. A. Bruce and J. F. Diaz-Valdes, “Model of nonlinear axion-electrodynamics,” Int. J. Mod. Phys. D, vol. 30, p. 2150025, 2021. https://doi.org/10.1142/s0218271821500255.Suche in Google Scholar

[47] S. P. Klevansky, “The Nambu—Jona-Lasinio model of quantum chromodynamics,” Rev. Mod. Phys., vol. 64, p. 649, 1992. https://doi.org/10.1103/revmodphys.64.649.Suche in Google Scholar

[48] M. Alford, “Color-superconducting quark matter,” Annu. Rev. Nucl. Part. Sci., vol. 51, p. 131, 2001. https://doi.org/10.1146/annurev.nucl.51.101701.132449.Suche in Google Scholar

[49] P. F. Bedaque and T. Schafer, “High-density quark matter under stress,” Nucl. Phys. A, vol. 697, p. 802, 2002. https://doi.org/10.1016/s0375-9474(01)01272-6.Suche in Google Scholar

[50] Y. Nambu and G. Jona-Lasinio, “Dynamical model of elementary particles based on an analogy with superconductivity. I,” Phys. Rev., vol. 122, p. 345, 1961, Phys. Rev., vol. 124, p. 246, 1961. https://doi.org/10.1103/physrev.122.345.Suche in Google Scholar

[51] N. N. Bogoliubov, “A new method in the theory of superconductivity. I,” Sov. Phys. JETP, vol. 7, p. 41, 1958.Suche in Google Scholar

[52] V. Rubakov, Classical Theory of Gauge Fields, 1st ed. Princeton, NJ, Princeton U. P., 2002.Suche in Google Scholar

[53] The Higgs mechanism was introduced simultaneously by a number of authors in the context of local-gauge invariant relativistic superconductivity models, P. W. Anderson (1963); G. S. Guralnik, C. R. Hagen and T. W. B. Kibble (1964); P. Higgs (1964); and in the context of mass of gauge vector mesons, by F. Englert and R. Brout (1964).Suche in Google Scholar

[54] H. B. Nielsen and P. Olesen, “Vortex-line models for dual strings,” Nucl. Phys. B, vol. 61, p. 45, 1973. https://doi.org/10.1016/0550-3213(73)90350-7.Suche in Google Scholar

[55] F. London, Superfluids, vol. I, New York, Wiley, 1950.Suche in Google Scholar

[56] K. von Klitzing, G. Dorda, and M. Pepper, “New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance,” Phys. Rev. Lett., vol. 45, p. 494, 1980. https://doi.org/10.1103/physrevlett.45.494.Suche in Google Scholar

[57] D. C. Tsui, H. L. Stormer, and A. C. Gossard, “Two-dimensional magnetotransport in the extreme quantum limit,” Phys. Rev. Lett., vol. 48, p. 1559, 1982. https://doi.org/10.1103/physrevlett.48.1559.Suche in Google Scholar

[58] R. B. Laughlin, “Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations,” Phys. Rev. Lett., vol. 50, p. 1395, 1983. https://doi.org/10.1103/physrevlett.50.1395.Suche in Google Scholar

[59] F. D. M. Haldane, “Geometrical description of the fractional quantum Hall effect,” Phys. Rev. Lett., vol. 107, p. 116801, 2011. https://doi.org/10.1103/physrevlett.107.116801.Suche in Google Scholar

[60] B. Rosenstein and D. Li, Ginzburg-Landau Theory of Condensates: Thermodynamics, Dynamics and Formation of Topological Matter, Cambridge, Cambridge U. P., 2022.10.1017/9781108872737Suche in Google Scholar

[61] M. Tinkham, Introduction to Superconductivity, 2nd ed. New York, McGraw-Hill, 1996.Suche in Google Scholar

[62] M. Cyrot, “Ginzburg-Landau theory for superconductors,” Rep. Prog. Phys., vol. 36, p. 103, 1973. https://doi.org/10.1088/0034-4885/36/2/001.Suche in Google Scholar

[63] P. Gor’kov and G. M. Eliashberg, “The behavior of a superconductor in a variable field,” Sov. Phys. JETP, vol. 28, p. 1291, 1969.Suche in Google Scholar

[64] S. Weinberg, “Superconductivity for particular theorists,” Prog. Theor. Phys. Suppl., vol. 86, p. 43, 1986. https://doi.org/10.1143/ptps.86.43.Suche in Google Scholar

[65] S. Weinberg, The Quantum Theory o f Fields, vol. II, Cambridge, Cambridge U. P., 1995.10.1017/CBO9781139644167Suche in Google Scholar

[66] J. M. Lattimer and M. Prakash, “The physics of neutron stars,” Science, vol. 304, p. 536, 2004. https://doi.org/10.1126/science.1090720.Suche in Google Scholar PubMed

[67] C. P. Lorenz, D. G. Ravenhall, and C. J. Pethick, “Neutron star crusts,” Phys. Rev. Lett., vol. 70, p. 379, 1993. https://doi.org/10.1103/physrevlett.70.379.Suche in Google Scholar PubMed

[68] D. N. Kobyakov, “Application of superconducting-superfluid magnetohydrodynamics to nuclear “pasta” in neutron stars,” Phys. Rev. C, vol. 98, p. 045803, 2018. https://doi.org/10.1103/physrevc.98.045803.Suche in Google Scholar

[69] Z.-W. Zhang and C. J. Pethick, “Proton superconductivity in pasta phases in neutron star crusts,” Phys. Rev. C, vol. 103, p. 055807, 2021. https://doi.org/10.1103/physrevc.103.055807.Suche in Google Scholar

[70] K. Takanaka, “Magnetic properties of superconductors with uniaxial symmetry,” Phys. Status Solidi B, vol. 68, p. 623, 1975. https://doi.org/10.1002/pssb.2220680221.Suche in Google Scholar

[71] K. Takanaka, “Upper critical field of anisotropic superconductors,” Solid State Commun., vol. 42, p. 123, 1982. https://doi.org/10.1016/0038-1098(82)90365-9.Suche in Google Scholar

[72] D. Makarov, O. M. Volkov, A. Kákay, O. V. Pylypovskyi, B. Budinská and O. V. Dobrovolskiy, “New dimension in magnetism and superconductivity: 3D and curvilinear nanoarchitectures,” Adv. Mater., vol. 34, p. 2101758, 2022.10.1002/adma.202101758Suche in Google Scholar PubMed

[73] O. V. Dobrovolskiy, “Abrikosov fluxonics in washboard nanolandscapes,” Physica C, vol. 533, p. 80, 2017. https://doi.org/10.1016/j.physc.2016.07.008.Suche in Google Scholar

[74] E. H. Brandt, “Vortex-vortex interaction in thin superconducting films,” Phys. Rev. B, vol. 79, p. 134526, 2009. https://doi.org/10.1103/physrevb.79.134526.Suche in Google Scholar

Received: 2023-05-18
Accepted: 2023-09-26
Published Online: 2023-10-18
Published in Print: 2023-12-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 16.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zna-2023-0120/html
Button zum nach oben scrollen