Home The effect of dust streaming on arbitrary amplitude solitary waves in superthermal polarized space dusty plasma
Article
Licensed
Unlicensed Requires Authentication

The effect of dust streaming on arbitrary amplitude solitary waves in superthermal polarized space dusty plasma

  • Syeda Neelam Naeem , Anisa Qamar , Ata-ur Rahman EMAIL logo and Wedad Albalawi
Published/Copyright: October 12, 2023

Abstract

The impact of dust streaming and polarization force on dust acoustic solitary waves (DASWs) is examined in a non-magnetized dusty plasma made up of negatively charged dust, superthermal ions, and Maxwellian electrons. In the linear limit, the dispersion relation is derived and numerically analyzed. In order to explore the characteristics of arbitrary amplitude DASWs, a Sagdeev potential technique is used. It is explored how the existence domain and characteristics of the DASWs are affected by the polarization force connected to the superthermality index of ions and dust streaming. The relevance of the present study to space dusty plasma, in particular to Saturn’s F-ring, is highlighted.


Corresponding author: Ata-Ur Rahman, Department of Physics, Islamia College Peshawar, Peshawar 25120, Pakistan, E-mail:

Acknowledgments

The authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R157), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

  1. Research ethics: The study does not involve any personal details of any individuals or the use of information, patient data, or case studies etc for which approval is needed.

  2. Informed consent: All the authors are well informed about this study.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Competing interests: All the authors have no competing interests.

  5. Research funding: None declared.

  6. Data availability: The authors confirm that the data supporting the findings of this study are available within the paper.

References

[1] G. S. Selwyn, K. L. Haller, and E. F. Patterson, “Trapping and behavior of particulates in a radio frequency magnetron plasma etching tool,” J. Vac. Sci. Technol., A, vol. 11, p. 1132, 1993. https://doi.org/10.1116/1.578453.Search in Google Scholar

[2] H. Kersten, H. Deutsch, E. Stoffels, W. W. Stoffels, G. M. W. Kroesen, and R. Hippler, “Micro-disperse particles in plasmas: from disturbing side effects to new applications,” Contrib. Plasma Phys., vol. 41, p. 598, 2001. https://doi.org/10.1002/1521-3986(200111)41:6<598::aid-ctpp598>3.0.co;2-z.10.1002/1521-3986(200111)41:6<598::AID-CTPP598>3.0.CO;2-ZSearch in Google Scholar

[3] N. N. Rao, P. K. Shukla, and M. Y. Yu, “Dust-acoustic waves in dusty plasmas,” Planet. Space Sci., vol. 38, p. 543, 1990. https://doi.org/10.1016/0032-0633(90)90147-i.Search in Google Scholar

[4] A. Barkan, R. L. Merlino, and N. D’Angelo, “Laboratory observation of the dust-acoustic wave mode,” Phys. Plasmas, vol. 2, p. 3563, 1995. https://doi.org/10.1063/1.871121.Search in Google Scholar

[5] J. B. Pieper and J. Goree, “Dispersion of plasma dust acoustic waves in the strong-coupling regime,” Phys. Rev. Lett., vol. 77, p. 3137, 1996. https://doi.org/10.1103/physrevlett.77.3137.Search in Google Scholar

[6] G. Prabhuram and J. Goree, “Experimental observation of very low-frequency macroscopic modes in a dusty plasma,” Phys. Plasmas, vol. 3, p. 1212, 1996.10.1063/1.871745Search in Google Scholar

[7] J. R. Asbridge, S. J. Bame, and I. B. Strong, “Outward flow of protons from the Earth’s bow shock,” Geophys. Res., vol. 73, p. 5777, 1968. https://doi.org/10.1029/ja073i017p05777.Search in Google Scholar

[8] R. Lundlin, A. Zakharov, R. Pellinen, et al., “First measurements of the ionospheric plasma escape from Mars,” Nature, vol. 341, p. 609, 1989.10.1038/341609a0Search in Google Scholar

[9] Y. Futaana, S. Machida, Y. Saito, A. Matsuoka, and H. Hayakawa, “Moon-related nonthermal ions observed by Nozomi: Species, sources, and generation mechanisms,” J. Geophys. Res., vol. 108, p. 151, 2003.10.1029/2002JA009366Search in Google Scholar

[10] V. M. Vasyliunas, “A survey of low-energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3,” J. Geophys. Res., vol. 73, p. 2839, 1968. https://doi.org/10.1029/ja073i009p02839.Search in Google Scholar

[11] N. Divine and H. B. Garret, “Charged particle distributions in Jupiter’s magnetosphere,” J. Geophys. Res., vol. 88, p. 6889, 1983. https://doi.org/10.1029/ja088ia09p06889.Search in Google Scholar

[12] S. M. Krimigis, E. P. Keath, T. P. Armstrong, L. J. Lanzerotti, and G. Gloeckler, “General characteristics of hot plasma and energetic particles in the Saturnian magnetosphere: results from the Voyager spacecraft,” J. Geophys. Res., vol. 88, p. 8871, 1983. https://doi.org/10.1029/ja088ia11p08871.Search in Google Scholar

[13] P. Christon, D. G. Mitchell, D. J. Williams, L. A. Frank, C. Y. Huang, and T. E. Eastman, “Energy spectra of plasma sheet ions and electrons from ∼50 eV/e to ∼1 MeV during plasma temperature transitions,” J. Geophys. Res., vol. 93, p. 2562, 1988. https://doi.org/10.1029/ja093ia04p02562.Search in Google Scholar

[14] B. Abrahim-Shrauner and W. C. Feldman, “Electromagnetic ion-cyclotron wave growth rates and their variation with velocity distribution function shape,” J. Plasma Phys., vol. 17, p. 123, 1977. https://doi.org/10.1017/s002237780002047x.Search in Google Scholar

[15] M. P. Leubner, “On Jupiter’s whistler emission,” J. Geophys. Res., vol. 87, p. 6335, 1982. https://doi.org/10.1029/ja087ia08p06335.Search in Google Scholar

[16] T. P. Armstrong, M. T. Paonessa, E. V. BellII, and S. M. Krimigis, “Voyager observations of Saturnian ion and electron phase space densities,” J. Geophys. Res., vol. 88, p. 8893, 1983. https://doi.org/10.1029/ja088ia11p08893.Search in Google Scholar

[17] D. Summers and R. M. Thorne, “The modified plasma dispersion function,” Phys. Fluids B, vol. 3, p. 1835, 1991. https://doi.org/10.1063/1.859653.Search in Google Scholar

[18] R. L. Mace and M. A. Hellberg, “A dispersion function for plasmas containing superthermal particles,” Phys. Plasmas, vol. 2, p. 2098, 1995. https://doi.org/10.1063/1.871296.Search in Google Scholar

[19] S. A. El-Tantawy, A. M. Wazwaz, and A. Rahman, “Three-dimensional modulational instability of the electrostatic waves in e–p–i magnetoplasmas having superthermal particles,” Phys. Plasmas, vol. 24, p. 022126, 2017. https://doi.org/10.1063/1.4976842.Search in Google Scholar

[20] S. Khan, A. Rahman, F. Hadi, A. Zeb, and M. Z. Khan, “Weakly dissipative dust acoustic solitons in the presence of superthermal particles,” Contrib. Plasma Phys., vol. 57, p. 223, 2017. https://doi.org/10.1002/ctpp.201700008.Search in Google Scholar

[21] M. Khalid, F. Hadi, and A. Rahman, “Ion-scale cnoidal waves in a magnetized anisotropic superthermal plasma,” J. Phys. Soc. Jpn., vol. 88, p. 114501, 2019. https://doi.org/10.7566/jpsj.88.114501.Search in Google Scholar

[22] N. S. Saini and I. Kourakis, “Dust-acoustic wave modulation in the presence of superthermal ions,” Phys. Plasmas, vol. 15, p. 123701, 2008.10.1063/1.3033748Search in Google Scholar

[23] K. Singh and N. S. Saini, “The evolution of rogue wave triplets and super rogue waves in superthermal polarized space dusty plasma,” Phys. Plasmas, vol. 26, p. 113702, 2019.10.1063/1.5119894Search in Google Scholar

[24] B. Kaur, M. Singh, and N. S. Saini, “Dust ion-acoustic shock waves in magnetized pair-ion plasma with kappa distributed electrons,” AIP Conf. Proc., vol. 1925, p. 020018, 2018.10.1063/1.5020406Search in Google Scholar

[25] K. Singh, P. Sethi, and N. S. Saini, “Effect of polarization force on head-on collision between multi-solitons in dusty plasma,” Phys. Plasmas, vol. 25, p. 033705, 2018.10.1063/1.5020194Search in Google Scholar

[26] H. A. Alyousef, A. Khan, A. Rahman, and S. A. El-Tantawy, “Effect of orbital angular momentum on dust-ion-acoustic waves in a superthermal plasma,” Phys. Fluids, vol. 35, p. 063109, 2023.10.1063/5.0141001Search in Google Scholar

[27] A. Saha and P. Chatterjee, “New analytical solutions for dust acoustic solitary and periodic waves in an unmagnetized dusty plasma with kappa distributed electrons and ions,” Phys. Plasmas, vol. 21, p. 022111, 2014. https://doi.org/10.1063/1.4864626.Search in Google Scholar

[28] S. Hamaguchi and R. T. Farouki, “Polarization force on a charged particulate in a nonuniform plasma,” Phys. Rev. E, vol. 49, p. 4430, 1994. https://doi.org/10.1103/physreve.49.4430.Search in Google Scholar PubMed

[29] B. Pradhan, A. Gowrisankar, A. Abdikian, S. Banerjee, and A. Saha, “Propagation of ion-acoustic wave and its fractal representations in spin polarized electron plasma,” Phys. Scr., vol. 98, p. 065604, 2023. https://doi.org/10.1088/1402-4896/acd3bf.Search in Google Scholar

[30] S. Hamaguchi and R. T. Farouki, “Plasma–particulate interactions in nonuniform plasmas with finite flows,” Phys. Plasmas, vol. 1, p. 2110, 1994. https://doi.org/10.1063/1.870608.Search in Google Scholar

[31] S. Ali, W. Masood, K. Singh, and R. Jahangir, “Test charge driven response of a dusty plasma with polarization force,” Front. Astron. Space Sci., vol. 9, p. 987561, 2022.10.3389/fspas.2022.987561Search in Google Scholar

[32] M. Asaduzzaman, A. A. Mamun, and K. S. Ashrafi, “Dust-acoustic waves in nonuniform dusty plasma in presence of polarization force,” Phys. Plasmas, vol. 18, p. 113704, 2011.10.1063/1.3657432Search in Google Scholar

[33] M. Asaduzzaman and A. A. Mamun Phys, “Roles of polarization force and nonthermal electron on dust-acoustic waves in an inhomogeneous dusty plasma with positively charged dust,” Plasmas, vol. 19, p. 093704, 2012.10.1063/1.4750056Search in Google Scholar

[34] S. A. Khrapak, A. V. Ivlev, V. V. Yaroshenko, and G. E. Morill, “Influence of a polarization force on dust acoustic waves,” Phys. Rev. Lett., vol. 102, p. 245004, 2009. https://doi.org/10.1103/physrevlett.102.245004.Search in Google Scholar

[35] P. Bandyopadhyay, U. Konopka, S. A. Khrapak, G. E. Morfill, and A. Sen, “Effect of polarization force on the propagation of dust acoustic solitary waves,” New J. Phys., vol. 12, p. 073002, 2010. https://doi.org/10.1088/1367-2630/12/7/073002.Search in Google Scholar

[36] O. Bouzit and M. Tribeche, “Dust-acoustic waves modulational instability and rogue waves in a polarized dusty plasma,” Phys. Plasmas, vol. 22, p. 103703, 2015.10.1063/1.4933006Search in Google Scholar

[37] H. Chen, S. Zhou, R. Luo, and S. Liu, “Nonlinear dust acoustic waves with polarization force effects in Kappa distribution plasma,” Jpn. J. Appl. Phys., vol. 56, p. 016101, 2017. https://doi.org/10.7567/jjap.56.016101.Search in Google Scholar

[38] S. Kempf, R. Srama, F. Postberg, et al.., “Composition of saturnian stream particles,” Science, vol. 307, p. 1274, 2005. https://doi.org/10.1126/science.1106218.Search in Google Scholar PubMed

[39] P. K. Shukla, D. A. Mendis, and T. Desai, Eds. Advances in Dusty Plasmas, Singapore, World Scientific, 1997, p. 3.10.1142/9789814529228Search in Google Scholar

[40] P. K. Shukla and A. A. Mamun, Introduction to Dusty Plasma Physics, Bristol and Philadelphia, Institute of Physics, Publishing Ltd, 2002.10.1887/075030653XSearch in Google Scholar

[41] A. Saha and S. Banerjee, Dynamical Systems and Nonlinear Waves in Plasmas, Boca Raton, FL, Routledge, Taylor and Francis Group, CRC Press,, 2021.10.1201/9781003042549Search in Google Scholar

[42] R. Z. Sagdeev, “Cooperative phenomena and shock waves in collisionless plasmas,” Rev. Mod. Phys., vol. 4, pp. 23–91, 1966.Search in Google Scholar

[43] T. K. Baluku, M. A. Hellberg, and F. Verheest, “New light on ion acoustic solitary waves in a plasma with two-temperature electrons,” Europhys. Lett., vol. 91, p. 15001, 2010. https://doi.org/10.1209/0295-5075/91/15001.Search in Google Scholar

[44] F. Verheest, M. A. Hellberg, and T. K. Baluku, “Arbitrary amplitude ion-acoustic soliton coexistence and polarity in a plasma with two ion species,” Phys. Plasmas, vol. 19, p. 032305, 2012.10.1063/1.3691963Search in Google Scholar

[45] S. Mayout, K. Bentabet, and M. Tribeche, “Effect of the polarization force on the dust-acoustic soliton energy: effect of the polarization force on the dust-acoustic soliton energy,” Contrib. Plasma Phys., vol. 56, pp. 99–103, 2016. https://doi.org/10.1002/ctpp.201500068.Search in Google Scholar

[46] M. Horanyi, “Dust streams from jupiter and Saturn,” Phys. Plasmas, vol. 7, p. 3847, 2000. https://doi.org/10.1063/1.1288909.Search in Google Scholar

[47] S. M. Krimigis, J. F. Carbary, E. P. Keath, T. P. Armstrong, L. J. Lanzerotti, and G. Gloeckler, “General characteristics of hot plasma and energetic particles in the Saturnian magnetosphere: results from the Voyager spacecraft,” J. Geophys. Res. Space Phys., vol. 88, pp. 8871–8892, 1983. https://doi.org/10.1029/ja088ia11p08871.Search in Google Scholar

[48] S. A. Alkhateeb, S. Hussain, W. Albalawi, S. A. El-Tantawy, and E. I. El-Awady, “Dissipative Kawahara ion-acoustic solitary and cnoidal waves in a degenerate magnetorotating plasma,” J. Taibah Univ. Sci., vol. 17, no. 1, p. 2187606, 2023.10.1080/16583655.2023.2187606Search in Google Scholar

[49] R. A. Alharbey, W. R. Alrefae, H. Malaikah, E. Tag-Eldin, and S. A. El-Tantawy, “Novel approximate analytical solutions to the nonplanar modified kawahara equation and modeling nonlinear structures in electronegative plasmas,” Symmetry, vol. 15, p. 97, 2023. https://doi.org/10.3390/sym15010097.Search in Google Scholar

[50] S. M. E. Ismaeel, A.-M. Wazwaz, E. Tag-Eldin, and S. A. El-Tantawy, “Simulation studies on the dissipative modified kawahara solitons in a complex plasma,” Symmetry, vol. 15, p. 57, 2023. https://doi.org/10.3390/sym15010057.Search in Google Scholar

[51] W. Albalawi, S. A. El-Tantawy, and S. A. Alkhateeb, “The phase shift analysis of the colliding dissipative KdV solitons,” J. Ocean Eng. Sci., vol. 7, pp. 521–527, 2022. https://doi.org/10.1016/j.joes.2021.09.021.Search in Google Scholar

[52] S. A. El-Tantawy, L. S. El-Sherif, A. M. Bakry, W. Alhejaili, and A.-M. Wazwaz, “On the analytical approximations to the nonplanar damped Kawahara equation: Cnoidal and solitary waves and their energy,” Phys. Fluids, vol. 34, p. 113103, 2022.10.1063/5.0119630Search in Google Scholar

[53] M. R. Alharthi, R. A. Alharbey, and S. A. El-Tantawy, “Novel analytical approximations to the nonplanar Kawahara equation and its plasma applications,” Eur. Phys. J. Plus, vol. 137, no. 10, p. 1172, 2022. https://doi.org/10.1140/epjp/s13360-022-03355-6.Search in Google Scholar

[54] N. H. Aljahdaly and S. A. El-Tantawy, “Novel anlytical solution to the damped Kawahara equation and its application for modeling the dissipative nonlinear structures in a fluid medium,” J. Ocean Eng. Sci., vol. 7, pp. 492–497, 2022. https://doi.org/10.1016/j.joes.2021.10.001.Search in Google Scholar

Received: 2023-04-28
Accepted: 2023-09-13
Published Online: 2023-10-12
Published in Print: 2023-12-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 10.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zna-2023-0104/html
Scroll to top button