Home Artificial intelligence approach to analyze SIMS profiles of 11B, 31P and 75As in n- and p-type silicon substrates: experimental investigation
Article
Licensed
Unlicensed Requires Authentication

Artificial intelligence approach to analyze SIMS profiles of 11B, 31P and 75As in n- and p-type silicon substrates: experimental investigation

  • Walid Filali ORCID logo EMAIL logo , Mohamed Boubaaya , Elyes Garoudja , Fouaz Lekoui ORCID logo , Ibrahime Abdellaoui , Rachid Amrani , Slimane Oussalah and Nouredine Sengouga ORCID logo
Published/Copyright: October 20, 2023

Abstract

In this work, we report an effective approach based on an artificial intelligence technique to investigate the secondary ions mass spectroscopy (SIMS) profiles of boron, phosphorus and arsenic ions. Those dopant ions were implanted into n- and p-type (100) Silicon substrate using the ion implantation technique with energy of 100 and 180 keV. Annealing treatment was conducted at various temperatures ranging from 900 to 1030 °C for 30 min. The doping profile parameters such as the activation energy, diffusion coefficient, junction depth, implant dose, projected range and standard deviation were determined using particle swarm optimization (PSO) algorithm. The efficiency of this strategy was experimentally verified by the fitting between both real measured SIMS profile and predicted ones. In addition, a set of simulated doping profiles was generated for different annealing time to prove the ability of this approach to accurately estimate the above parameters even when changing the experimental conditions.


Corresponding author: Walid Filali, Plateforme Technologique de Microfabrication, Centre de Développement des Technologies Avancées, cité 20 août 1956, Baba Hassen, 16081 Algiers, Algeria, E-mail:

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission; 1-Walid Filali: Experimental fabrication, Characterization and data analysis, manuscript writing (original draft). 2-Mohamed Boubaaya: SIMS analysis and, physical interpretation. 3-Elyes Garoudja: Problem formulation and PSO algorithm implementation. 4-Fouaz Lekoui: Discussion and results interpretation. 5-Ibrahime Abdellaoui: Data analysis and physical interpretation. 6-Rachid Amrani: Helping in results analysis and interpretation. 7-Slimane Oussalah: Obtained results evaluation and validation. 8-Noureddine Sengouga: Contribution evaluation and manuscript improvement.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

[1] G.-C. Yi, Semiconductor Nanostructures for Optoelectronic Devices: Processing, Characterization and Applications, Heidelberg, Springer Science & Business Media, 2012.Search in Google Scholar

[2] A. Rajasekhar, B. Gimi, and W. Hu, “Applications of semiconductor fabrication methods to nanomedicine: a review of recent inventions and techniques,” Recent Pat. Nanomed., vol. 3, pp. 9–20, 2013. https://doi.org/10.2174/1877912311303010003.Search in Google Scholar PubMed PubMed Central

[3] J. Plummer, M. Deal, and P. Griffin, Ion Implantation, Silicon VLSI Technology: Fundamentals, Practice and Modeling, New Jersey, Prentice Hall, 2000, p. 479.Search in Google Scholar

[4] K. Sierakowski, R. Jakiela, B. Lucznik, et al.., “High pressure processing of ion implanted GaN,” Electronics, vol. 9, p. 1380, 2020. https://doi.org/10.3390/electronics9091380.Search in Google Scholar

[5] M. I. Current, “The role of ion implantation in CMOS scaling: a tutorial review,” in AIP Conference Proceedings, AIP Publishing, 2019.10.1063/1.5127674Search in Google Scholar

[6] H. Ryssel and I. Ruge, “Ion implantation,” Wiley and Sons, vol. 99, p. 478, 1986.Search in Google Scholar

[7] S. Pearton, “Ion implantation for isolation of III–V semiconductors,” Mater. Sci. Rep., vol. 4, pp. 313–363, 1990. https://doi.org/10.1016/s0920-2307(05)80001-5.Search in Google Scholar

[8] G. Dearnaley, “Ion implantation,” Nature, vol. 256, pp. 701–705, 1975. https://doi.org/10.1038/256701a0.Search in Google Scholar

[9] J. Williams, “Ion implantation of semiconductors,” Mater. Sci. Eng. A, vol. 253, pp. 8–15, 1998. https://doi.org/10.1016/s0921-5093(98)00705-9.Search in Google Scholar

[10] R. Li, R. Zhu, S. Chen, et al.., “Study of damage generation induced by focused helium ion beam in silicon,” J. Vac. Sci. Technol. B, vol. 37, pp. 031804-1–031804-6, 2019. https://doi.org/10.1116/1.5096908.Search in Google Scholar

[11] J. Gass, H. Müller, H. Stüssi, and S. Schweitzer, “Oxygen diffusion in silicon and the influence of different dopants,” J. Appl. Phys., vol. 51, pp. 2030–2037, 1980. https://doi.org/10.1063/1.327922.Search in Google Scholar

[12] M. Wittmer, P. Fahey, G. Scilla, S. Iyer, and M. Tejwani, “Novel diffusion phenomenon of dopants in silicon at low temperatures,” Phys. Rev. Lett., vol. 66, p. 632, 1991. https://doi.org/10.1103/physrevlett.66.632.Search in Google Scholar PubMed

[13] P. Tsouroutas, D. Tsoukalas, I. Zergioti, N. Cherkashin, and A. Claverie, “Modeling and experiments on diffusion and activation of phosphorus in germanium,” J. Appl. Phys., vol. 105, p. 094910, 2009. https://doi.org/10.1063/1.3117485.Search in Google Scholar

[14] R. Bock, P. P. Altermatt, and J. Schmidt, “Accurate extraction of doping profiles from electrochemical capacitance voltage measurements,” in Proc. 23rd Eur. Photovolt. Sol. Energy Conf. Exhib., Valencia, Spain, 2008, pp. 1510–1513.Search in Google Scholar

[15] M. Wang, A. Debernardi, Y. Berencén, et al.., “Breaking the doping limit in silicon by deep impurities,” Phys. Rev. Appl., vol. 11, p. 054039, 2019. https://doi.org/10.1103/physrevapplied.11.054039.Search in Google Scholar

[16] J. C. Norman, Z. Zhang, D. Jung, et al.., “The importance of p-doping for quantum dot laser on silicon performance,” IEEE J. Quant. Electron., vol. 55, pp. 1–11, 2019. https://doi.org/10.1109/jqe.2019.2941579.Search in Google Scholar

[17] G. Hlawacek, V. Veligura, R. van Gastel, and B. Poelsema, “Helium ion microscopy,” J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom., vol. 32, p. 020801, 2014. https://doi.org/10.1116/1.4863676.Search in Google Scholar

[18] P. Williams, “Secondary ion mass spectrometry,” Annu. Rev. Mater. Sci., vol. 15, pp. 517–548, 1985. https://doi.org/10.1146/annurev.ms.15.080185.002505.Search in Google Scholar

[19] A. Benninghoven, F. Rudenauer, and H. W. Werner, “Secondary ion mass spectrometry: basic concepts, instrumental aspects, applications and trends,” Chem. Anal., vol. 86, p. 1277, 1987.Search in Google Scholar

[20] R. Chen, H. Wagner, A. Dastgheib-Shirazi, et al.., “A model for phosphosilicate glass deposition via POCl3 for control of phosphorus dose in Si,” J. Appl. Phys., vol. 112, pp. 124912-1–124912-6, 2012. https://doi.org/10.1063/1.4771672.Search in Google Scholar

[21] W. Lambrecht, “Dopants and defects in semiconductors,” Mater. Today, vol. 7, p. 349, 2012. https://doi.org/10.1016/s1369-7021(12)70146-3.Search in Google Scholar

[22] F. Shepherd, W. Robinson, J. Brown, and B. Phillips, “SIMS investigation of very shallow implanted Si layers,” J. Vac. Sci. Technol. A, vol. 1, pp. 991–994, 1983. https://doi.org/10.1116/1.572020.Search in Google Scholar

[23] S. Werner, U. Belledin, A. Kimmerle, A. Fallisch, A. Wolf, and D. Biro, “Doping-and carrier concentration profile characterisation of highly phosphorus-doped emitters,” in Proceedings of the 25th European Photovoltaic Solar Energy Conference and Exhibition, Valencia, Spain, 2010, pp. 1942–1947.Search in Google Scholar

[24] J. Christensen, H. H. Radamson, A. Y. Kuznetsov, and B. Svensson, “Phosphorus and boron diffusion in silicon under equilibrium conditions,” Appl. Phys. Lett., vol. 82, pp. 2254–2256, 2003. https://doi.org/10.1063/1.1566464.Search in Google Scholar

[25] C. S. Kumar, S. Tabean, A. Morisset, et al.., “Evaluation of secondary electron intensities for dopant profiling in ion implanted semiconductors: a correlative study combining SE, SIMS and ECV methods,” Semicond. Sci. Technol., vol. 36, p. 085003, 2021. https://doi.org/10.1088/1361-6641/ac0854.Search in Google Scholar

[26] I. Silvaco, ATHENA Users Manual’s, Santa Clara, CA, Silvaco, Inc, 2007.Search in Google Scholar

[27] F. Lekoui, R. Amrani, W. Filali, et al.., “Investigation of the effects of thermal annealing on the structural, morphological and optical properties of nanostructured Mn doped ZnO thin films,” Opt. Mater., vol. 118, p. 111236, 2021. https://doi.org/10.1016/j.optmat.2021.111236.Search in Google Scholar

[28] M. Zeraati, T.-C. Chen, M. Ebri, N. P. S. Chauhan, and G. Sargazi, “Length prediction of silicon nanowires (SiNWs) prepared by the MACE method using the ANN-COA-PSO algorithm for high supercapacitor applications,” J. Phys. Chem. Solids, vol. 156, p. 110146, 2021. https://doi.org/10.1016/j.jpcs.2021.110146.Search in Google Scholar

[29] X. Tian, “Particle swarm optimization algorithm in improved electrical control system,” J. Phys. Conf. Ser., vol. 2066, p. 012020, 2021.10.1088/1742-6596/2066/1/012020Search in Google Scholar

[30] M. Boubaaya, F. Hadj-Larbi, and S. Oussalah, “Simulation of ion implantation for CMOS 1µm using SILVACO tools,” in 2012 24th International Conference on Microelectronics (ICM), Algiers, Algeria, 2012, pp. 1–4.10.1109/ICM.2012.6471381Search in Google Scholar

[31] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of ICNN’95-International Conference on Neural Networks, IEEE, 1995, pp. 1942–1948.10.1109/ICNN.1995.488968Search in Google Scholar

[32] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory, MHS’95,” in Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Ieee, 1995, pp. 39–43.10.1109/MHS.1995.494215Search in Google Scholar

[33] A. Godio and A. Santilano, “On the optimization of electromagnetic geophysical data: application of the PSO algorithm,” J. Appl. Geophys., vol. 148, pp. 163–174, 2018. https://doi.org/10.1016/j.jappgeo.2017.11.016.Search in Google Scholar

[34] N. Jain, U. Nangia, and J. Jain, “A review of particle swarm optimization,” J. Inst. Eng. Ser. B, vol. 99, pp. 407–411, 2018. https://doi.org/10.1007/s40031-018-0323-y.Search in Google Scholar

[35] S. M. Sze, Semiconductor Devices: Pioneering Papers, Singapore, World Scientific, 1991.10.1142/1087Search in Google Scholar

[36] A. Tapriya, Ultra-Shallow Phosphorous Diffusion in Silicon Using Molecular Monolayer Doping, New York, Rochester Institute of Technology, 2017.Search in Google Scholar

[37] S. Sze, “VLSI technology overviews and trends,” Jpn. J. Appl. Phys., vol. 22, p. 3, 1983. https://doi.org/10.7567/jjaps.22s1.3.Search in Google Scholar

[38] U. Gosele, “Current understanding of diffusion mechanisms in silicon, semiconductor silicon-1986,” Electrochem. Soc., vol. 133, pp. 541–555, 1986.Search in Google Scholar

[39] T. Chao, Introduction to Semiconductor Manufacturing Technology, New Jersey, Prentice Hall, 2000.Search in Google Scholar

Received: 2023-07-24
Accepted: 2023-10-04
Published Online: 2023-10-20
Published in Print: 2023-12-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zna-2023-0200/html
Scroll to top button