Home Impact of partially thermal electrons on the propagation characteristics of extraordinary mode in relativistic regime
Article
Licensed
Unlicensed Requires Authentication

Impact of partially thermal electrons on the propagation characteristics of extraordinary mode in relativistic regime

  • Syeda Noureen EMAIL logo
Published/Copyright: September 14, 2021

Abstract

On employing linearized Vlasov–Maxwell equations the solution of relativistic electromagnetic extraordinary mode is investigated for the wave propagating perpendicular to a uniform ambient magnetic field (in the presence of arbitrary magnetic field limit i.e., ω > Ω > k.v) in partially degenerate (i.e., for T F ≥ T and T ≠ 0) electron plasma under long wavelength limit (ωk.v). Due to the inclusion of weak quantum degeneracy the relativistic Fermi–Dirac distribution function is expanded under the relativistic limit ( m 0 2 c 2 2 p 2 < 1 ) to perform momentum integrations which generate the Polylog functions. The propagation characteristics and shifting of cutoff points of the extraordinary mode are examined in different relativistic density and magnetic field ranges. The novel graphical results of extraordinary mode in relativistic quantum partially degenerate (for μ T = 0 ), nondegenerate (for μ T 1 ) and fully/completely degenerate (for μ T 1) environments are obtained and the previously reported results are retraced as well.


Corresponding author: Syeda Noureen, Department of Physics, Government College University, Katchery Road, Lahore 54000, Pakistan, E-mail:

  1. Author contribution: The author has accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The author declares no conflicts of interest regarding this article.

Appendix: Series expansion of hypergeometric functions and calculation of momentum integral

F 2 1 3 2 , 5 2 , 3 , α 2 = 1 α 2 5 + F 2 1 5 2 , 7 2 , 5 , α 2 = 1 α 2 7 + F 2 1 3 2 , 2 , 7 2 , α 2 = 1 3 α 2 14 + F 3 2 1 2 , 2 , 1 , 5 2 , 1 , α 2 = 1 2 α 2 5 + F 3 2 3 2 , 2 , 1 , 7 2 , 3 , α 2 = 1 2 α 2 7 + F 3 2 3 2 , 3 , 2 , 7 2 , 3 , α 2 = 1 3 α 2 14 + F 2 1 3 2 , 2 , 5 2 , α 2 = 1 3 α 2 10 + ( A )

The momentum integral used in Eqs. (5)(7) is:

0 p 2 n + 1 1 m 0 2 c 3 2 p T z 1 exp c p T + 1 d p = n Γ 2 n m 0 2 c 2 L i 1 + 2 n z 1 2 1 + 2 n T 2 L i 2 + 2 n z m 0 2 c 4 L i 1 + 2 n z 2 c T 2 n ( B )

References

[1] N. Roy, S. S. Tasnim, and A. A. Mamun, “Solitary waves and double layers in an ultra-relativistic degenerate dusty electron-positron-ion plasma,” Phys. Plasmas, vol. 19, 2012, Art no. 033705. https://doi.org/10.1063/1.3688877.Search in Google Scholar

[2] L. Nahar, M. S. Zobaer, N. Roy, and A. A. Mamun, “ Ion-acoustic K-dV and mK-dV solitons in a degenerate electron-ion dense plasma,” Phys. Plasmas, vol. 20, 2013, Art no. 022304. https://doi.org/10.1063/1.4790519.Search in Google Scholar

[3] M. H. Thoma, “Ultrarelativistic electron–positron plasma,” Eur. Phys. J. D, vol. 55, p. 271, 2009. https://doi.org/10.1140/epjd/e2009-00077-9.Search in Google Scholar

[4] S. A. Khan, “Coupled modes in magnetized dense plasma with relativistic-degenerate electrons,” Phys. Plasmas, vol. 19, 2012, Art no. 014506. https://doi.org/10.1063/1.3677782.Search in Google Scholar

[5] G. B. van Albada, “On the origin of the heavy elements,” Astrophys. J., vol. 105, p. 393, 1947. https://doi.org/10.1086/144914.Search in Google Scholar

[6] M. Zaghoo, T. R. Boehly, J. R. Rygg, P. M. Celliers, S. X. Hu, and G. W. Collins, “Breakdown of Fermi degeneracy in the simplest liquid metal,” arXiv:1901.11410 [physics.plasm-ph], 2019.10.1103/PhysRevLett.122.085001Search in Google Scholar PubMed

[7] G. E. Morfill, M. Rubin-Zuzic, H. Rothermel, et al.., “Highly resolved fluid flows: “liquid plasmas” at the kinetic level,” Phys. Rev. Lett., vol. 92, p. 175004, 2004. https://doi.org/10.1103/physrevlett.92.175004.Search in Google Scholar PubMed

[8] S. Son and N. J. Fisch, “Ignition regime for fusion in a degenerate plasma,” Phys. Lett., vol. 356, p. 72, 2006. https://doi.org/10.1016/j.physleta.2006.03.065.Search in Google Scholar

[9] A. C. Hayes, M. E. Gooden, E. Henry, et al.., “Plasma stopping-power measurements reveal transition from non-degenerate to degenerate plasmas,” Nat. Phys., vol. 16, pp. 432–437, 2020. https://doi.org/10.1038/s41567-020-0790-3.Search in Google Scholar

[10] N. Maafa, “Dispersion relation in a plasma with arbitrary degeneracy,” Phys. Scripta, vol. 48, p. 351, 1993. https://doi.org/10.1088/0031-8949/48/3/012.Search in Google Scholar

[11] D. B. Melrose and A. Mushtaq, “Dispersion in a thermal plasma including arbitrary degeneracy and quantum recoil,” Phys. Rev. E, vol. 82, 2010, Art no. 056402. https://doi.org/10.1103/physreve.82.056402.Search in Google Scholar

[12] D. B. Melrose and A. Mushtaq, “Plasma dispersion function for a Fermi–Dirac distribution,” Phys. Plasmas, vol. 17, p. 122103, 2010. https://doi.org/10.1063/1.3528272.Search in Google Scholar

[13] F. Haas and S. Mahmood, “Linear and nonlinear ion-acoustic waves in nonrelativistic quantum plasmas with arbitrary degeneracy,” Phys. Rev. E, vol. 92, 2015, Art no. 053112. https://doi.org/10.1103/physreve.92.053112.Search in Google Scholar

[14] B. Eliasson and P. K. Shukla, “Nonlinear quantum fluid equations for a finite temperature Fermi plasma,” Phys. Sripta, vol. 78, 2008, Art no. 025503. https://doi.org/10.1088/0031-8949/78/02/025503.Search in Google Scholar

[15] B. Eliasson and M. A. Moghanjoughi, “Finite temperature static charge screening in quantum plasmas,” Phys. Lett., vol. 380, p. 2518, 2016. https://doi.org/10.1016/j.physleta.2016.05.043.Search in Google Scholar

[16] M. A. Moghanjoughi, “Generalized sheath criterion for arbitrary degenerate plasmas,” Phys. Plasmas, vol. 24, 2017, Art no. 012113. https://doi.org/10.1063/1.4975078.Search in Google Scholar

[17] J. Bergman and B. Eliasson, “Linear wave dispersion laws in unmagnetized relativistic plasma: analytical and numerical results,” Phys. Plasmas, vol. 8, p. 1482, 2001. https://doi.org/10.1063/1.1358313.Search in Google Scholar

[18] N. L. Tsintsadze, A. Rasheed, H. A. Shah, and G. Murtaza, “Nonlinear screening effect in an ultrarelativistic degenerate electron-positron gas,” Phys. Plasmas, vol. 16, p. 112307, 2009. https://doi.org/10.1063/1.3264737.Search in Google Scholar

[19] A. Rasheed, N. L. Tsintsadze, and G. Murtaza, “Ion-acoustic solitary waves in ultra-relativistic degenerate pair-ion plasmas,” Phys. Plasmas, vol. 18, p. 112701, 2011. https://doi.org/10.1063/1.3657431.Search in Google Scholar

[20] G. Abbas, Z. Iqbal, and G. Murtaza, “On the perpendicular propagating modes in the ultra-relativistic weakly magnetized plasma,” Phys. Plasmas, vol. 22, 2015, Art no. 032110. https://doi.org/10.1063/1.4916050.Search in Google Scholar

[21] H. Farooq, M. Sarfraz, Z. Iqbal, G. Abbas, and H. A. Shah, “Parallel propagating modes and anomalous spatial damping in the ultra-relativistic electron plasma with arbitrary degeneracy,” Phys. Plasmas, vol. 26, p. 110301, 2017. https://doi.org/10.1088/1674-1056/26/11/110301.Search in Google Scholar

[22] M. Sarfraz, H. Farooq, G. Abbas, S. Noureen, Z. Iqbal, and A. Rasheed, “Dispersion characteristics of anisotropic unmagnetized ultra-relativistic transverse plasma wave with arbitrary electron degeneracy,” Phys. Plasmas, vol. 25, 2018, Art no. 032106. https://doi.org/10.1063/1.5009709.Search in Google Scholar

[23] V. P. Silin, “On the electromagnetic properties of a relativistic plasma,” J. Exp. Theor. Phys., vol. 38, pp. 1577–1583, 1960.Search in Google Scholar

[24] J. T. Mendonca, “Wave kinetics of relativistic quantum plasmas,” Phys. Plasmas, vol. 18, 2011, Art no. 062101. https://doi.org/10.1063/1.3590865.Search in Google Scholar

[25] P. K. Shukla and B. Eliasson, “Colloquium: Nonlinear collective interactions in quantum plasmas with degenerate electron fluids,” Rev. Mod. Phys., vol. 83, p. 885, 2011. https://doi.org/10.1103/revmodphys.83.885.Search in Google Scholar

[26] S. Noureen, G. Abbas, and M. Sarfraz, “On the dispersion characteristics of extraordinary mode in a relativistic fully degenerate electron plasma,” Phys. Plasmas, vol. 25, 2018, Art no. 012123. https://doi.org/10.1063/1.5010745.Search in Google Scholar

[27] S. Noureen, G. Abbas, and H. Farooq, “On the high frequency perpendicular propagating waves in ultra-relativistic fully degenerate electron plasma,” Phys. Plasmas, vol. 24, 2017, Art no. 092103. https://doi.org/10.1063/1.4986021.Search in Google Scholar

[28] S. Noureen, “Propagation characteristics of weakly magnetized electromagnetic modes in a relativistic partially degenerate electron plasma,” Indian J. Phys., 2021. https://doi.org/10.1007/s12648-021-02046-9.Search in Google Scholar

[29] A. F. Alexandrov, A. S. Bogdankevich, and A. A. Rukhadze, Principles of Plasma Electro-Dynamics, Berlin, Heidelberg, Springer-Verlag, 1984.10.1007/978-3-642-69247-5Search in Google Scholar

[30] F. F. Chen, Introduction to Plasma Physics and Controlled Fusion, Vol. 1, New York, Plenum, 1984.10.1007/978-1-4757-5595-4Search in Google Scholar

[31] G. Abbas, M. F. Bashir, M. Ali, and G. Murtaza, “Study of high frequency parallel propagating modes in a weakly magnetized relativistic degenerate electron plasma,” Phys. Plasmas, vol. 19, 2012, Art no. 032103. https://doi.org/10.1063/1.3690099.Search in Google Scholar

[32] G. Abbas, G. Murtaza, and R. J. Kingham, “High frequency electromagnetic modes in a weakly magnetized relativistic electron plasma,” Phys. Plasmas, vol. 17, 2020, Art no. 072105.10.1063/1.3460345Search in Google Scholar

Received: 2021-06-12
Revised: 2021-08-08
Accepted: 2021-08-30
Published Online: 2021-09-14
Published in Print: 2021-12-20

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zna-2021-0166/html?lang=en
Scroll to top button