Home Ultrasonic study of Si-oil based magneto-rheological fluid
Article
Licensed
Unlicensed Requires Authentication

Ultrasonic study of Si-oil based magneto-rheological fluid

  • Chandreshvar Prasad Yadav EMAIL logo , Dharmendra Kumar Pandey and Dhananjay Singh
Published/Copyright: May 13, 2020

Abstract

The present study is devoted to ultrasonic characterization of Si-oil based magneto-rheological (MR) fluid. Initially, the structural, morphological and magnetic properties of carbonyl iron powder have been carried out by its X-ray diffraction (XRD), scanning electron microscope (SEM), SEM-energy dispersive X-ray analyser (SEM-EDX) and vibrating sample magnetometer (VSM) measurements. The cubic structure with lattice parameter 2.841 Å of powdered material is confirmed by XRD study while spherical particle content is confirmed by SEM measurement. The VSM measurement of powder endorses the smooth magnetization and demagnetization with no remnance and coercivity. The rheological and ultrasonic properties are measured for pure Si-oil and four synthesized MR fluids having 10–40 wt% of carbonyl iron powder. The density and viscosity of synthesized MR fluid is found to enhance with weight percentage of carbonyl iron powder. In absence of magnetic field, the longitudinal ultrasonic velocity is found to decay with temperature and concentration. In presence of magnetic field, the longitudinal ultrasonic velocity is found to enhance while velocity measured at transverse magnetic field is found to decay for each MR fluid. The change in ultrasonic velocity with concentration at fixed temperature or magnetic field resembles the magnetization characteristics of disperse powder in MR fluid. The study opens a new dimension for its characterization through ultrasonic non-destructive technique.


Corresponding author: Chandreshvar Prasad Yadav, Department of Physics, P.P.N. (P.G.) College, Kanpur, Uttar Pradesh, India, E-mail:

Acknowledgements

Authors express their high gratitude to Dr. Satish Chandra, Department of Physics, P.P.N. (P.G.) College, Kanpur for his valuable discussion during the preparation of manuscript. Besides this, the authors also devote a special regards to the Reviewers for their valuable comments in improving the manuscript.

References

[1] M. Kciuk and R. Turczyn, J. Achiev. Mater. Manufac. Engg., vol. 18, p. 127, 2006.Search in Google Scholar

[2] A.G. Olabi and A. Grunwald, Mater. Desi., vol. 28, p. 2658, 2007, https://doi.org/10.1016/j.matdes.2006.10.009.10.1016/j.matdes.2006.10.009Search in Google Scholar

[3] P. Gadekar, V. S. Kanthale, N. D. Khaire, et al., Engg. Technol., vol. 7, p. 32, 2017, https://doi.org/10.1016/j.matdes.2006.10.009.10.1016/j.matdes.2006.10.009Search in Google Scholar

[4] R. Jinaga, T. Jagadeesha, S. Kolekar, et al., Int. J. Mol. Sci., vol. 20, p. 5766, 2019, https://doi.org/10.3390/ijms20225766.10.3390/ijms20225766Search in Google Scholar PubMed PubMed Central

[5] M. N. Aruna, M. R. Rahman, S. Joladarashi, et al., Mater. Res. Express, vol. 6, 2019, Art no. 086105, https://doi.org/10.1088/2053-1591/ab1e03.10.1088/2053-1591/ab1e03Search in Google Scholar

[6] J. S. Oh, C. W. Shul, T. H. Kim, et al., Int. J. Mol. Sci., vol. 21, p. 1149, 2020, https://doi.org/10.3390/ijms21031149.10.3390/ijms21031149Search in Google Scholar PubMed PubMed Central

[7] W. Song, Z. Peng, P. Li, et al., Micromachines, vol. 11, p. 314, 2020, https://doi.org/10.3390/mi11030314.10.3390/mi11030314Search in Google Scholar PubMed PubMed Central

[8] M. Ashtiani, S. H. Hashemabadi, and A. Ghaffari, J. Magn. Mag. Mater, vol. 374, p. 716, 2015, https://doi.org/10.1016/j.jmmm.2014.09.020.10.1016/j.jmmm.2014.09.020Search in Google Scholar

[9] S. Kolekar, R. V. Kurahatti, V. G. Kamble, et al., In. J. Nano Sci., vol. 18, 2019, Art no. 1850041, https://doi.org/10.1142/S0219581X18500412.10.1142/S0219581X18500412Search in Google Scholar

[10] H. Singh, H. S. Gill, and S. S. Sehgal, J. Sci. Tech., vol. 9, p. 1, 2016, https://doi.org/10.17485/ijst/2016/v9iS1/101472.10.17485/ijst/2016/v9iS1/101472Search in Google Scholar

[11] B. K. Kumbhar, S. R. Patil, and S. M. Sawant, Engg. Sci. Technol. I. J., vol. 18, p. 432, 2015, https://doi.org/10.17485/ijst/2016/v9iS1/101472.10.17485/ijst/2016/v9iS1/101472Search in Google Scholar

[12] M. Romaszko and B.S. Sapinski, J. Theo. Appl. Mechanics, vol. 56, p. 571, 2018.10.15632/jtam-pl.56.3.571Search in Google Scholar

[13] N. Golinelli, A. C. Becnel, A. Spaggiari, et al., IEEE Transac. Magnetics, vol. 52, 2016, Art no. 4600304.10.1109/TMAG.2016.2515983Search in Google Scholar

[14] G. A. Flores and J. Liu, J. Intell. Mater. Sys. Struc., vol. 13, p. 641, 2002.10.1177/1045389X02013010006Search in Google Scholar

[15] J. R. López, P. Castro, L. Elvira, et al., Ultrasonic, vol. 61, p. 10, 2015, https://doi.org/10.1016/j.ultras.2015.03.011.10.1016/j.ultras.2015.03.011Search in Google Scholar PubMed

[16] A. R. Baev, E. V. Krobko, and Z. A. Novikava, J. Intel. Mater. Syst. Struct., special issue, article 1, 2015, https://doi.org/10.1177/1045389X15586448.10.1177/1045389X15586448Search in Google Scholar

[17] M. A. Bramantya, M. Motozawa, and T. Sawada, J. Phys:. Condens. Matter, vol. 22, 2010, Art no. 324102, https://doi.org/10.1088/0953-8984/22/32/324102.10.1088/0953-8984/22/32/324102Search in Google Scholar PubMed

[18] J. R. López, L. Elvira Segura, and F. M. de Espinosa Freijo, J. Magn. Mag. Mater., vol. 324, p. 222, 2012, https://doi.org/10.1016/j.jmmm.2011.08.019.10.1016/j.jmmm.2011.08.019Search in Google Scholar

[19] A. Roszkowski, M. Bogdan, W. Skoczynski, et al., Measure. Sci. Rev., vol. 8, p. 58, 2008, https://doi.org/10.2478/v10048-008-0015-x.10.2478/v10048-008-0015-xSearch in Google Scholar

[20] F. Donado, J. L. Carrillo, and M. E. Mendoza, J. Phys. Condens. Matter., vol. 14, p. 2153, 2002, https://doi.org/10.1088/0953-8984/14/9/304.10.1088/0953-8984/14/9/304Search in Google Scholar

[21] M. A. Bramantya and T. Sawada, J. Magn. Mag. Mater., vol. 323, p. 1330, 2011, https://doi.org/10.1016/j.jmmm.2010.11.040.10.1016/j.jmmm.2010.11.040Search in Google Scholar

[22] B. Raj, V. Rajendran, and P. Palanichamy, Science and Technology of Ultrasonics, New Delhi, India, Narosa Publishing House, 2004.Search in Google Scholar

[23] J. K´udelˇc´ık, P. Bury, P. Kopˇcansk´y, et al., J. Magn. Mag. Mater., vol. 38, p. 28, 2015.10.1016/j.jmmm.2015.04.031Search in Google Scholar

[24] D. K. Pandey and S. Pandey, in Acoustic Waves: Ultrasonic: A Technique of Material Characterization, D. W. Dissanayake, Ed., Sciyo Croatia, Scio Publisher, 2010, p. 397.Search in Google Scholar

[25] C. F. Ying and R. Truell, J. Appl. Phys., vol. 27, p. 1086, 1956, https://doi.org/10.1063/1.1722545.10.1063/1.1722545Search in Google Scholar

[26] S. Taketomi, H. Takahashi, N. Inaba, et al., J. Phys. Soc. Jpn., vol. 60, p. 1689, 1991, https://doi.org/10.1143/JPSJ.60.1689.10.1143/JPSJ.60.1689Search in Google Scholar

[27] D. Barara, S. Dutta, R. Srivatava, et al., I. J. Engg. Tech. Res., vol. 6, p. 428, 2017, https://doi.org/10.17577/IJERTV6IS080217.10.17577/IJERTV6IS080217Search in Google Scholar

Received: 2020-03-09
Accepted: 2020-04-16
Published Online: 2020-05-13
Published in Print: 2020-07-28

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zna-2020-0065/pdf
Scroll to top button