Abstract
A condensing potential (CP) model was established for predicting the geometric structure of two-dimensional (2D) atomic islands on crystal surfaces. To further verify the CP model, statistical molecular dynamics simulations are performed to investigate the trapping adatom process of atomic island steps on Pt (111). According to the detailed analysis on the adatom trapping process, the CP model should be a universal theory to understand the shape of the 2D atomic islands on crystal surfaces.
References
[1] J. A.Venables, Introduction to Surface and Thin Film Processes, Cambridge University Press, Cambridge, UK 2000.10.1017/CBO9780511755651Suche in Google Scholar
[2] T. Michely, M. Kalff, G. Comsa, M. Strobel, and K. H. Heinig, Phys. Rev. Lett. 86, 2589 (2001).10.1103/PhysRevLett.86.2589Suche in Google Scholar
[3] M. Schmid, C. Lenauer, A. Buchsbaum, F. Wimmer, G. Rauchbauer, et al., Phys. Rev. Lett. 103, 076101 (2009).10.1103/PhysRevLett.103.076101Suche in Google Scholar
[4] C. Busse, H. Hansen, U. Linke, and T. Michely, Phys. Rev. Lett. 85, 326 (2000).10.1103/PhysRevLett.85.326Suche in Google Scholar
[5] C. Busse, C. Polop, M. Müller, K. Albe, U. Linke, et al., Phys. Rev. Lett. 91, 056103 (2003).10.1103/PhysRevLett.91.056103Suche in Google Scholar
[6] S. A. Chaparro, Y. Zhang, and J. Drucker, Appl. Phys. Lett. 76, 3534 (2000).10.1063/1.126698Suche in Google Scholar
[7] P. J. Feibelman, Phys. Rev. B 60, 4972 (1999).10.1103/PhysRevB.60.4972Suche in Google Scholar
[8] J. M. MacLeod, J. A. Lipton-Duffin, U. Lanke, S. G. Urquhart, and F. Rosei, Appl. Phys. Lett. 94, 103109 (2010).10.1063/1.3093674Suche in Google Scholar
[9] T. Y. Fu, and T. T. Tsong, Phys. Rev. B 61, 4511 (2000).10.1103/PhysRevB.61.4511Suche in Google Scholar
[10] O. Pietzsch, A. Kubetzka, M. Bode, and R. Wiesendanger, Phys. Rev. Lett. 92, 057202 (2004).10.1103/PhysRevLett.92.057202Suche in Google Scholar
[11] H. Brune, Surf. Sci. Rep. 31, 125 (1998).10.1006/appe.1998.0175Suche in Google Scholar
[12] M. M. Shen, D. J. Liu, C. J. Jenks, P. A. Thiel, and J. W. Evans, J. Chem. Phys. 130, 094701 (2009).10.1063/1.3078033Suche in Google Scholar
[13] K. Morgenstern, E. Lægsgaard, and F. Besenbacher, Phys. Rev. Lett. 94, 166104 (2005).10.1103/PhysRevLett.94.166104Suche in Google Scholar
[14] T. Michely and G. Comsa, Surf. Sci. 256, 217 (1991).10.1016/0039-6028(91)90865-PSuche in Google Scholar
[15] D. C. Schlöβer, L. K. Verheij, G. Rosenfeld, and G. Comsa, Phys. Rev. Lett. 82, 3843 (1999).10.1103/PhysRevLett.82.3843Suche in Google Scholar
[16] J. Ikonomov, K. Starbova, H. Ibach, and M. Giesen, Phys. Rev. B 75, 245411 (2007).10.1103/PhysRevB.75.245411Suche in Google Scholar
[17] M. Kalff, G. Comsa, and T. Michely, Phys. Rev. Lett. 81, 1255 (1998).10.1103/PhysRevLett.81.1255Suche in Google Scholar
[18] C. Yin, X. J. Ning, J. Zhuang, Y. Q. Xie, X. F. Gong, et al., Appl. Phys. Lett. 94, 183107 (2009).10.1063/1.3130091Suche in Google Scholar
[19] F. Cleri and V. Rosato, Phys. Rev. B 48, 22 (1993).10.1103/PhysRevB.48.22Suche in Google Scholar
[20] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).10.1103/PhysRevB.54.11169Suche in Google Scholar
[21] D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).10.1103/PhysRevB.41.7892Suche in Google Scholar PubMed
[22] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, et al., Phys. Rev. B 46, 6671 (1992).10.1103/PhysRevB.46.6671Suche in Google Scholar
[23] H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).10.1103/PhysRevB.13.5188Suche in Google Scholar
[24] J. M. Wofford, S. Nie, K. Thurmer, K. F. McCarty, and O. D. Dubon, Carbon 90, 284 (2015).10.1016/j.carbon.2015.03.056Suche in Google Scholar
[25] X. Chen, Y.-W. Wang, X. Liu, X.-Y. Wang, X.-B. Wang, et al., Appl. Surf. Sci. 345, 162 (2015).Suche in Google Scholar
[26] D. V. Gruznev, A. V. Matetskiy, L. V. Bondarenko, O. A. Utas, A. V. Zotov, et al., Nat. Comm. 4, 1679 (2013).10.1038/ncomms2706Suche in Google Scholar
[27] D. A. Olyanich, V. V. Mararov, T. V. Utas, O. A. Utas, D. V. Gruznev, A. et al., Surf. Sci. 635, 94 (2015).10.1016/j.susc.2015.01.003Suche in Google Scholar
©2016 by De Gruyter
Artikel in diesem Heft
- Frontmatter
- Robust Finite-Time Passivity for Discrete-Time Genetic Regulatory Networks with Markovian Jumping Parameters
- Multi-Soliton Solutions of the Generalized Sawada–Kotera Equation
- Electrical Conduction in Transition-Metal Salts
- Importance of Unit Cells in Accurate Evaluation of the Characteristics of Graphene
- Understanding the Formation Mechanism of Two-Dimensional Atomic Islands on Crystal Surfaces by the Condensing Potential Model
- The Thermodynamic Functions in Curved Space of Neutron Star
- Spanning Trees of the Generalised Union Jack Lattice
- Prolongation Structure of a Generalised Inhomogeneous Gardner Equation in Plasmas and Fluids
- Negative Energies in the Dirac Equation
- Residual Symmetry and Explicit Soliton–Cnoidal Wave Interaction Solutions of the (2+1)-Dimensional KdV–mKdV Equation
- Multifold Darboux Transformations of the Extended Bigraded Toda Hierarchy
- Unidirectional Excitation of Graphene Plasmon in Attenuated Total Reflection (ATR) Configuration
- Completed Optimised Structure of Threonine Molecule by Fuzzy Logic Modelling
Artikel in diesem Heft
- Frontmatter
- Robust Finite-Time Passivity for Discrete-Time Genetic Regulatory Networks with Markovian Jumping Parameters
- Multi-Soliton Solutions of the Generalized Sawada–Kotera Equation
- Electrical Conduction in Transition-Metal Salts
- Importance of Unit Cells in Accurate Evaluation of the Characteristics of Graphene
- Understanding the Formation Mechanism of Two-Dimensional Atomic Islands on Crystal Surfaces by the Condensing Potential Model
- The Thermodynamic Functions in Curved Space of Neutron Star
- Spanning Trees of the Generalised Union Jack Lattice
- Prolongation Structure of a Generalised Inhomogeneous Gardner Equation in Plasmas and Fluids
- Negative Energies in the Dirac Equation
- Residual Symmetry and Explicit Soliton–Cnoidal Wave Interaction Solutions of the (2+1)-Dimensional KdV–mKdV Equation
- Multifold Darboux Transformations of the Extended Bigraded Toda Hierarchy
- Unidirectional Excitation of Graphene Plasmon in Attenuated Total Reflection (ATR) Configuration
- Completed Optimised Structure of Threonine Molecule by Fuzzy Logic Modelling