Crystal structures of а series of 1-substituted imidazol-4,5-dicarboxylic acids
-
Maria A. Brusina
, Vladislav V. Gurzhiy
Abstract
Crystal structure of a series of 1-alkylimidazole-4,5-dicarboxylic acids has been determined. It is shown that an increase in the length of the alkyl group leads to drastic changes in the crystal and molecular structures. 1-Methyl and 1-ethylimidazole-4,5-dicarboxylic acid crystallize in zwitterionic form, but 1-propyl- and 1-butylimidazole-4,5-dicarboxylic acid crystallize as rare equimolar mixture of neutral and zwitterionic tautomeric forms. The observed changes in the crystal and molecular structures are apparently associated with the steric factor, which determines both the packing method and the tautomeric composition of the unit cell.
-
Research ethics: Not applicable.
-
Author contributions: All the authors have accepted responsibility for the entire content of submitted manuscript and approved its submission.
-
Competing interests: The authors declare no conflict of interest regarding this article.
-
Research funding: Research was carried out under support of the Ministry of Education and Science of Russian Federation in the sphere of research activity (project no. FGWG-2022-0004 2022-2025).
-
Data availability: The raw data can be obtained on request from the corresponding author.
References
1. Zhang, L., Peng, X. M., Damu, G. L., Geng, R. X., Zhou, C. H. Comprehensive review in current developments of imidazole-based medicinal chemistry. Med. Res. Rev. 2014, 34, 340–437; https://doi.org/10.1002/med.21290.Suche in Google Scholar PubMed
2. Dirersa, W. B. A review on 4,5-imidazoledicarboxylic acid: their chemistry and coordination potentials. Mod. Chem. Appl. 2017, 5, 1–5, 1000222; https://doi.org/10.4172/2329-6798.1000222.Suche in Google Scholar
3. Belousov, Y. A., Drozdov, A. A., Taydakov, I. V., Marchetti, F., Pettinari, R., Pettinari, C. Lanthanide azolecarboxylate compounds: structure, luminescent properties and applications. Coord. Chem. Rev. 2021, 445, 1–41, 214084; https://doi.org/10.1016/j.ccr.2021.214084.Suche in Google Scholar
4. Casadevalla, C., Buccia, A., Costas, M., Lloret-Fillol, J. Chapter four – Water oxidation catalysis with well-defined molecular iron complexes. Adv. Inorg. Chem. 2019, 74, 151–196.10.1016/bs.adioch.2019.03.004Suche in Google Scholar
5. Brusina, M. A., Nikolaev, D. N., Piotrovskiy, L. B. Synthesis of substituted imidazole-4,5-dicarboxylic acids. Russ. Chem. Bull. 2019, 68, 671–680; https://doi.org/10.1007/s11172-019-2474-7.Suche in Google Scholar
6. Liu, J., Chen, L., Cui, H., Zhang, J., Zhang, L., Su, C.-Y. Applications of metal-organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev. 2014, 43, 6011–6061; https://doi.org/10.1039/c4cs00094c.Suche in Google Scholar PubMed
7. Gu, Z.-G., Liu, Y.-T., Hong, X.-J., Zhan, Q.-G., Zheng, Z.-P., Zheng, S.-R., Li, W.-S., Hu, S.-J., Cai, Y.-P. Construction of metal-imidazole-based dicarboxylate networks with topological diversity: thermal stability, gas adsorption, and fluorescent emission properties. Cryst. Growth Des. 2012, 12, 2178–2186; https://doi.org/10.1021/cg2002095.Suche in Google Scholar
8. Banerjee, D., Mondal, B., Das, D., Das, A. K. Use of imidazole 4,5-dicarboxylic acid resin in vanadium speciation. Microchim. Acta 2003, 141, 107–113; https://doi.org/10.1007/s00604-002-0939-z.Suche in Google Scholar
9. Zheng, Y., Tan, C., Wang, Q., Zhang, C. C. 2-(3-Pyridyl)imidazole-4,5-dicarboxylic acid based lanthanide luminescent anion sensor. Solid State Sci. 2011, 13, 1687–1691; https://doi.org/10.1016/j.solidstatesciences.2011.06.014.Suche in Google Scholar
10. Piotrovskii, L. B., Lishko, P. V., Maksimyuk, A. P., Aleksandrova, I. Y., Kryshtal, O. A. A new class of agonists and antagonists of N-methyl-D-aspartic acid receptors: derivatives of imidazole-4,5- and pyrazole-3,4-dicarboxylic acids. Neurosci. Behav. Physiol. 2000, 30, 553–558; https://doi.org/10.1007/bf02462614.Suche in Google Scholar
11. Efremov, O. M., Aleksandrova, I. Y., Kulikov, S. V., Losev, N. A., Piotrovskii, L. B. Effect of some imidazole-4,5-dicarboxylic acid derivatives on the activity of N-methyl-D-aspartate (NMDA) receptors. Exp. Clinic Pharm. 2005, 68, 7–9 (in Russian).Suche in Google Scholar
12. Potter, A., Oldfield, V., Nunns, C., Fromont, C., Ray, S., Northfield, C. J., Bryant, C. J., Scrace, S. F., Robinson, D., Matossova, N., Baker, L., Dokurno, P., Surgenor, A. E., Davis, B., Richardson, C. M., Murray, J. B., Moore, J. D. Discovery of cell-active phenyl-imidazole Pin1 inhibitors by structure-guided fragment evolution. Bioorg. Med. Chem. Lett. 2010, 20, 6483–6488; https://doi.org/10.1016/j.bmcl.2010.09.063.Suche in Google Scholar PubMed
13. Babu, K. S., Reddy, M. S., Tagore, A. R., Reddy, G. S., Sebastian, S., Varma, M. S., Venkateswarlu, G., Bhattacharya, A., Reddy, P. P., Anand, R. V. Efficient synthesis of olmesartan medoxomil, an antihypertensive drug. Synth. Commun. 2009, 39, 291–298; https://doi.org/10.1080/00397910802372558.Suche in Google Scholar
14. Piotrovskij, L. B., Brusina, M. A., Nikolaev, D. N., Ramsh, S. M. Method for obtaining 1- and 1,2-dialkyl(aryl)-imidazole-4,5-dicarbonic acids. Patent Ru 2665712, April 4, 2018 (in Russian).Suche in Google Scholar
15. Aleksandrova, I. Y., Khrustaleva, V. S., Khromov-Borisov, N. V. Diamides of 1-alkyl imidazole-4,5-dicarboxilyc acids. Zh. Org. Khim. 1983, 19, 416–420. (in Russian).Suche in Google Scholar
16. Rigaku Oxford Diffraction, CrysAlisPro Software System (Version 1.171.41.116a); Rigaku Corporation: Wroclaw, Poland, 2021.Suche in Google Scholar
17. Sheldrick, G. M. Shelxt – integrated space-group and crystal-structure determination. Acta Cryst. Sect. A. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Suche in Google Scholar PubMed PubMed Central
18. Sheldrick, G. M. Crystal structure refinement with Shelxl. Acta Cryst. Sect. C. 2015, C71, 3–8, https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar
19. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. Olex2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Suche in Google Scholar
20. www.ccdc.cam.ac.uk/structures/.Suche in Google Scholar
21. Harmon, K. M., Gill, S. H., Rasmussen, P. G., Hardgrove, G. L.Jr. Hydrogen bonding. Part 69. Inter- and intramolecular hydrogen bonding effects on the structure, solubility, and reactivity of 4,5-dicarboxyimidazoles. J. Mol. Struct. 1999, 478, 145–154; https://doi.org/10.1016/s0022-2860(98)00669-3.Suche in Google Scholar
22. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M., Wood, P. A. Mercury 4.0 – from visualization to analysis, design and pre-diction. J. Appl. Crystallogr. 2020, 53, 226–235; https://doi.org/10.1107/s1600576719014092.Suche in Google Scholar PubMed PubMed Central
23. Guo, Y.-P. 4-Carboxy-2-methyl-1H-imidazol-3-ium5-carboxylate monohydrate. Acta Cryst. Sect. E. 2009, E65, o22; https://doi.org/10.1107/s1600536808040221.Suche in Google Scholar PubMed PubMed Central
24. Liu, J.-H., Song, W.-D., Li, X.-F., Miao, D.-L. 2-Ethyl-1H-imidazole-4-carboxylate monohydrate. Acta Cryst. Sect. E. 2011, E67, o996–o997; https://doi.org/10.1107/s1600536811010774.Suche in Google Scholar PubMed PubMed Central
25. Du, C.-J., Shi, Z.-H., Wang, L.-S., Du, C.-L. 5-Carboxy-2-isopropyl-1H-imidazol-3ium-4-carboxylate monohydrate. Acta Cryst. Sect. E. 2011, E67, o183; https://doi.org/10.1107/s1600536811024767.Suche in Google Scholar PubMed PubMed Central
26. Cao, Q., Duan, B.-R., Zhu, B., Cao, Zh. 1H-Imidazol-3-ium-4-carboxylate. Acta Cryst. Sect. E. 2012, 68, o134–o135; https://doi.org/10.1107/s1600536811052998.Suche in Google Scholar PubMed PubMed Central
27. Brown, C. J., Erenberg, M. Anthranilic acid, C7H7NO2, by neutron diffraction. Acta Cryst. Sect. C. 1985, 41, 441–443; https://doi.org/10.1107/s0108270185004206.Suche in Google Scholar
28. Brown, C. J. The crystal structure of anthranilic acid. Proc. R. Soc. London, Ser. A. 1968, 302, 185–199.10.1098/rspa.1968.0003Suche in Google Scholar
29. Asiri, A. M., Alzahrani, K. A. H., Faidallah, H. M., Alamry, K. A., Jotani, M. M., Tiekink, E. R. T. Co-crystallization of a neutral molecule and its zwitterionic tautomer: structure and Hirshfeld surface analysis of 5-methyl-4-(5-methyl-1H-pyrazol-3-yl)-2-phenyl-2,3-dihydro-1H-pyrazol-3-one 5-methyl-4-(5-methyl-1H-pyrazol-2-ium-3-yl)-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-1-ide monohydrate. Acta Cryst. 2019, E75, 565–570.10.1107/S2056989019004389Suche in Google Scholar PubMed PubMed Central
30. Liu, X., Michalchuk, A. A. L., Pulham, C. R., Boldyreva, E. V. An acetonitrile-solvated cocrystal of piroxicam and succinic acid with co-existing zwitterionic and non-ionized piroxicam molecules. Acta Cryst. 2019, C75, 29–37; https://doi.org/10.1107/s2053229618016911.Suche in Google Scholar
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/zkri-2023-0022).
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- In this issue
- Inorganic Crystal Structures (Original Paper)
- Ytterbium valence ordering in the low-temperature superstructure of Yb2Pd2Cd
- The HfFe2Si2 type silicides ScT2Si2 (T = Ru, Rh, Os) – structure and solid-state 29Si/45Sc NMR spectroscopy
- Finding the ‘Goldilocks Zone’: cationic size and tilting of carbodiimide and cyanamide anions
- High-pressure/high-temperature synthesis of the first walstromite-analogue borate Tm2CrB3O9
- Organic and Metalorganic Crystal Structures (Original Paper)
- A doubly mononuclear cobalt(II) complex constructed with azide anions and a new coordination mode of the 2-(2-pyridylmethylamino) ethanesulfonic acid ligands: structure, conformation comparison and Hirshfeld surface analysis
- Crystal structures of а series of 1-substituted imidazol-4,5-dicarboxylic acids
- A bibliographic survey of the structural chemistry of the Group 13 dithiophosphates and dithiophosphinates
Artikel in diesem Heft
- Frontmatter
- In this issue
- Inorganic Crystal Structures (Original Paper)
- Ytterbium valence ordering in the low-temperature superstructure of Yb2Pd2Cd
- The HfFe2Si2 type silicides ScT2Si2 (T = Ru, Rh, Os) – structure and solid-state 29Si/45Sc NMR spectroscopy
- Finding the ‘Goldilocks Zone’: cationic size and tilting of carbodiimide and cyanamide anions
- High-pressure/high-temperature synthesis of the first walstromite-analogue borate Tm2CrB3O9
- Organic and Metalorganic Crystal Structures (Original Paper)
- A doubly mononuclear cobalt(II) complex constructed with azide anions and a new coordination mode of the 2-(2-pyridylmethylamino) ethanesulfonic acid ligands: structure, conformation comparison and Hirshfeld surface analysis
- Crystal structures of а series of 1-substituted imidazol-4,5-dicarboxylic acids
- A bibliographic survey of the structural chemistry of the Group 13 dithiophosphates and dithiophosphinates