Abstract
The intermetallic ytterbium compound Yb2Pd2Cd shows a structural phase transition at ∼150 K. The structures of the room-temperature (Mo2B2Fe type, P4/mbm, a = 757.07(7), c = 371.99(4) pm, wR2 = 0.0620, 272 F 2 values, 12 variables) and low-temperature (new type, P4/mbm, a = 747.26(4), c = 741.46(4) pm, wR2 = 0.0384, 511 F 2 values, 19 variables) modifications were refined from single crystal X-ray diffractometer data. The superstructure formation corresponds to an isomorphic transition of index 2. The driving force for the structural phase transition is an ytterbium charge ordering (the superstructure exhibits two crystallographically independent ytterbium sites) with a much higher degree of divalent ytterbium in the low-temperature modification. The striking structural feature concerns the ytterbium–palladium coordination with different Yb–Pd distances: longer ones for predominantly divalent Yb1 (2 × 284.7 and 4 × 296.1 pm, ∅ = 292.3 pm) and shorter ones for trivalent Yb2 (2 × 277.5 and 4 × 288.4 pm, ∅ = 284.8 pm).
Acknowledgments
We thank Dr. A. Doğan for selecting the single.
-
Research ethics: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this submitted manuscript and approved the submission.
-
Competing interests: The authors declare no conflicts of interest regarding this article.
-
Research funding: This research was funded by Universität Münster.
-
Data availability: Data is available from the corresponding author on well-founded request.
References
1. Villars, P., Cenzual, K. Pearson’s Crystal Data – Crystal Structure Database for Inorganic Compounds; ASM International: Materials Park, Ohio, USA, 2022. Release 2022/23.Suche in Google Scholar
2. Burdett, J. K., Lee, S., McLarnan, T. J. J. Am. Chem. Soc. 1985, 107, 3083–3089; https://doi.org/10.1021/ja00297a012.Suche in Google Scholar
3. Parthé, E., Gelato, L., Chabot, B., Penzo, M., Cenzual, K., Gladyshevskii, R. TYPIX–Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types, Gmelin Handbook of Inorganic and Organometallic Chemistry, 8th ed.; Springer: Berlin (Germany), 1993.10.1007/978-3-662-10641-9Suche in Google Scholar
4. Miller, G. J. Eur. J. Inorg. Chem. 1998, 523–536.10.1002/(SICI)1099-0682(199805)1998:5<523::AID-EJIC523>3.0.CO;2-LSuche in Google Scholar
5. Miller, G. J. Z. Anorg. Allg. Chem. 2006, 632, 2078; https://doi.org/10.1002/zaac.200670006.Suche in Google Scholar
6. Pöttgen, R. Z. Anorg. Allg. Chem. 2014, 640, 869–891; https://doi.org/10.1002/zaac.201400023.Suche in Google Scholar
7. Ferro, R., Saccone, A. Intermetallic Chemistry; Elsevier: Amsterdam, 2008.Suche in Google Scholar
8. Steurer, W., Dshemuchadse, J. Intermetallics: Structures, Properties, and Statistics, IUCr Monographs on Crystallography, Vol. 26; Oxford University Press: New York, 2016.10.1093/acprof:oso/9780198714552.001.0001Suche in Google Scholar
9. Pöttgen, R., Johrendt, D. Intermetallics, 2nd ed.; De Gruyter: Berlin, 2019.10.1515/9783110636727Suche in Google Scholar
10. Block, T., Seidel, S., Pöttgen, R. Z. Kristallogr. 2022, 237, 215–218; https://doi.org/10.1515/zkri-2022-0021.Suche in Google Scholar
11. Rieger, W., Nowotny, H., Benesovsky, F. Monatsh. Chem. 1964, 95, 1502–1503; https://doi.org/10.1007/bf00901704.Suche in Google Scholar
12. Doğan, A., Rayaprol, S., Pöttgen, R. J. Phys.: Condens. Matter 2007, 19, 026209.10.1088/0953-8984/19/2/026209Suche in Google Scholar
13. Dhar, S. K., Settai, R., Ōnuki, Y., Galatanu, A., Haga, Y., Manfrinetti, P., Pani, M. J. Magn. Magn. Mater. 2007, 308, 143–152; https://doi.org/10.1016/j.jmmm.2006.05.013.Suche in Google Scholar
14. Pöttgen, R. Z. Naturforsch. 1994, 49b, 1309–1313.10.1515/znb-1994-1001Suche in Google Scholar
15. Gravereau, P., Mirambet, F., Chevalier, B., Weill, F., Fournès, L., Laffargue, D., Bourée, F., Etourneau, J. J. Mater. Chem. 1994, 4, 1893–1895; https://doi.org/10.1039/jm9940401893.Suche in Google Scholar
16. Lukachuk, M., Pöttgen, R. Z. Kristallogr. 2003, 218, 767–787; https://doi.org/10.1524/zkri.218.12.767.20545.Suche in Google Scholar
17. Sahlberg, M., Andersson, Y. Acta Crystallogr. C 2009, 65, i7–i8; https://doi.org/10.1107/s0108270109000766.Suche in Google Scholar
18. Reimann, M. K., Matar, S. F., Pöttgen, R. Z. Naturforsch. 2022, 77b, 693–702.10.1515/znb-2022-0101Suche in Google Scholar
19. Lueken, H. Magnetochemie; Teubner: Stuttgart, 1999.10.1007/978-3-322-80118-0Suche in Google Scholar
20. Palatinus, L. Acta Crystallogr. 2013, 69B, 1–16.10.1107/S0108768112051361Suche in Google Scholar PubMed
21. Palatinus, L., Chapuis, G. J. Appl. Crystallogr. 2007, 40, 786–790; https://doi.org/10.1107/s0021889807029238.Suche in Google Scholar
22. Petříček, V., Dušek, M., Palatinus, L. Z. Kristallogr. 2014, 229, 345–352.10.1515/zkri-2014-1737Suche in Google Scholar
23. Petříček, V., Palatinus, L., Plášil, J., Dušek, M. Z. Kristallogr. 2023, 238, 271–282.10.1515/zkri-2023-0005Suche in Google Scholar
24. Aroyo, M. I., Perez-Mato, J. M., Capillas, C., Kroumova, E., Ivantchev, S., Madariaga, G., Kirov, A., Wondratschek, H. Z. Kristallogr. 2006, 221, 15–27; https://doi.org/10.1524/zkri.2006.221.1.15.Suche in Google Scholar
25. Aroyo, M. I., Kirov, A., Capillas, C., Perez-Mato, J. M., Wondratschek, H. Acta Crystallogr. 2006, A62, 115–128.10.1107/S0108767305040286Suche in Google Scholar PubMed
26. Aroyo, M. I., Perez-Mato, J. M., Orobengoa, D., Tasci, E., de la Flor, G., Kirov, A. Bulg. Chem. Commun. 2011, 43, 183–197.Suche in Google Scholar
27. Diamond, Version 4.5; Crystal Impact, Bonn, Germany, 2018. http://www.crystalimpact.com.Suche in Google Scholar
28. CORELDRAW Graphics Suite 2023 (Version 24.3.0.571); Corel Corporation: Ottawa, Ontario (Canada), 2023.Suche in Google Scholar
29. Bärnighausen, H. Commun. Math. Chem. 1980, 9, 139–175.10.1007/BF01674443Suche in Google Scholar
30. Müller, U. Z. Anorg. Allg. Chem. 2004, 630, 1519–1537; https://doi.org/10.1002/zaac.200400250.Suche in Google Scholar
31. Müller, U., Wondratschek, H. International Tables for Crystallography, Vol. A1, Symmetry relations between Space Groups; John Wiley & Sons: Chichester, United Kingdom, 2010.10.1107/97809553602060000110Suche in Google Scholar
32. Müller, U. Symmetriebeziehungen zwischen verwandten Kristallstrukturen, 2nd ed.; Springer Spektrum Berlin: Heidelberg, Germany, 2023.10.1007/978-3-662-67166-5_12Suche in Google Scholar
33. Leineweber, A., Nitsche, H., Hlukhyy, V., Hoffmann, R.-D., Pöttgen, R. Intermetallics 2006, 14, 685–694; https://doi.org/10.1016/j.intermet.2005.11.002.Suche in Google Scholar
34. Mbarki, M., Touzani, R.St., Fokwa, B. P. T. J. Solid State Chem. 2013, 203, 304–306.10.1016/j.jssc.2013.04.018Suche in Google Scholar
35. Mbarki, M., Touzani, R.St., Rehorn, C. W. G., Gladisch, F. C., Fokwa, B. P. T. J. Solid State Chem. 2016, 242, 28–33; https://doi.org/10.1016/j.jssc.2016.01.012.Suche in Google Scholar
36. Touzani, R.St., Mbarki, M., Chen, X., Fokwa, B. P. T. Eur. J. Inorg. Chem. 2016, 4104–4110.10.1002/ejic.201600689Suche in Google Scholar
37. Engel, S., Gießelmann, E. C. J., Reimann, M. K., Pöttgen, R., Janka, O. ACS Organic & Inorganic Au 2024, 4, accepted for publication. https://doi.org/10.1021/acsorginorgau.3c00054.Suche in Google Scholar
38. Shastry, B. S., Sutherland, B. Physica B 1981, 108, 1069–1070.10.1016/0378-4363(81)90838-XSuche in Google Scholar
39. Miyahara, S., Ueda, K. Phys. Rev. Lett. 1999, 82, 3701–3704.10.1103/PhysRevLett.82.3701Suche in Google Scholar
40. Lee, J. Y., You, Y.-Z., Sachdev, S., Vishwanath, A. Phys. Rev. X 2019, 9, 041037.Suche in Google Scholar
41. Pöttgen, R., Arpe, P. E., Felser, C., Kußmann, D., Müllmann, R., Mosel, B. D., Künnen, B., Kotzyba, G. J. Solid State Chem. 1999, 145, 668–677; https://doi.org/10.1006/jssc.1998.8280.Suche in Google Scholar
42. Kim, M. S., Bennet, M. C., Aronson, M. C. Phys. Rev. B 2008, 77, 144425.10.1103/PhysRevE.77.049903Suche in Google Scholar
43. Kim, M. S., Bennet, M. C., Aronson, M. C. Physica B 2008, 403, 1411–1413; https://doi.org/10.1016/j.physb.2007.10.160.Suche in Google Scholar
44. Klenner, S., Pöttgen, R. Rare earth transition metal plumbides – an update. In Handbook on the Physics and Chemistry of Rare Earths; Pecharsky, V. K., Bünzli, J.-C., Eds. North-Holland/Elsevier: Amsterdam, Chapter 312, Vol. 57, 2020; 1–44.10.1016/bs.hpcre.2020.06.001Suche in Google Scholar
45. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Suche in Google Scholar
46. Matar, S. F., Pöttgen, R., Chevalier, B. Intermetallics 2014, 51, 18–23; https://doi.org/10.1016/j.intermet.2014.02.018.Suche in Google Scholar
47. Takahashi, R., Honda, T., Miyake, A., Kagayama, T., Shimizu, K., Ebihara, T., Kimura, T., Wakabayashi, Y. Phys. Rev. B 2013, 88, 054109; https://doi.org/10.1103/physrevb.88.054109.Suche in Google Scholar
48. Niepmann, D., Prots, Y. M., Pöttgen, R., Jeitschko, W. J. Solid State Chem. 2000, 154, 329–337; https://doi.org/10.1006/jssc.2000.8789.Suche in Google Scholar
49. Pöttgen, R., Lang, A., Hoffmann, R.-D., Künnen, B., Kotzyba, G., Müllmann, R., Mosel, B. D., Rosenhahn, C. Z. Kristallogr. 1999, 214, 143–150.10.1524/zkri.1999.214.3.143Suche in Google Scholar
50. Muro, Y., Yamane, K., Kim, M.-S., Takabatake, T., Godart, C., Rogl, P. J. Phys. Soc. Jpn. 2003, 72, 1745–1750; https://doi.org/10.1143/jpsj.72.1745.Suche in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- In this issue
- Inorganic Crystal Structures (Original Paper)
- Ytterbium valence ordering in the low-temperature superstructure of Yb2Pd2Cd
- The HfFe2Si2 type silicides ScT2Si2 (T = Ru, Rh, Os) – structure and solid-state 29Si/45Sc NMR spectroscopy
- Finding the ‘Goldilocks Zone’: cationic size and tilting of carbodiimide and cyanamide anions
- High-pressure/high-temperature synthesis of the first walstromite-analogue borate Tm2CrB3O9
- Organic and Metalorganic Crystal Structures (Original Paper)
- A doubly mononuclear cobalt(II) complex constructed with azide anions and a new coordination mode of the 2-(2-pyridylmethylamino) ethanesulfonic acid ligands: structure, conformation comparison and Hirshfeld surface analysis
- Crystal structures of а series of 1-substituted imidazol-4,5-dicarboxylic acids
- A bibliographic survey of the structural chemistry of the Group 13 dithiophosphates and dithiophosphinates
Artikel in diesem Heft
- Frontmatter
- In this issue
- Inorganic Crystal Structures (Original Paper)
- Ytterbium valence ordering in the low-temperature superstructure of Yb2Pd2Cd
- The HfFe2Si2 type silicides ScT2Si2 (T = Ru, Rh, Os) – structure and solid-state 29Si/45Sc NMR spectroscopy
- Finding the ‘Goldilocks Zone’: cationic size and tilting of carbodiimide and cyanamide anions
- High-pressure/high-temperature synthesis of the first walstromite-analogue borate Tm2CrB3O9
- Organic and Metalorganic Crystal Structures (Original Paper)
- A doubly mononuclear cobalt(II) complex constructed with azide anions and a new coordination mode of the 2-(2-pyridylmethylamino) ethanesulfonic acid ligands: structure, conformation comparison and Hirshfeld surface analysis
- Crystal structures of а series of 1-substituted imidazol-4,5-dicarboxylic acids
- A bibliographic survey of the structural chemistry of the Group 13 dithiophosphates and dithiophosphinates