Startseite Ytterbium valence ordering in the low-temperature superstructure of Yb2Pd2Cd
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Ytterbium valence ordering in the low-temperature superstructure of Yb2Pd2Cd

  • Jutta Kösters und Rainer Pöttgen EMAIL logo
Veröffentlicht/Copyright: 25. Dezember 2023

Abstract

The intermetallic ytterbium compound Yb2Pd2Cd shows a structural phase transition at ∼150 K. The structures of the room-temperature (Mo2B2Fe type, P4/mbm, a = 757.07(7), c = 371.99(4) pm, wR2 = 0.0620, 272 F 2 values, 12 variables) and low-temperature (new type, P4/mbm, a = 747.26(4), c = 741.46(4) pm, wR2 = 0.0384, 511 F 2 values, 19 variables) modifications were refined from single crystal X-ray diffractometer data. The superstructure formation corresponds to an isomorphic transition of index 2. The driving force for the structural phase transition is an ytterbium charge ordering (the superstructure exhibits two crystallographically independent ytterbium sites) with a much higher degree of divalent ytterbium in the low-temperature modification. The striking structural feature concerns the ytterbium–palladium coordination with different Yb–Pd distances: longer ones for predominantly divalent Yb1 (2 × 284.7 and 4 × 296.1 pm, ∅ = 292.3 pm) and shorter ones for trivalent Yb2 (2 × 277.5 and 4 × 288.4 pm, ∅ = 284.8 pm).


Corresponding author: Rainer Pöttgen, Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany, E-mail:

Acknowledgments

We thank Dr. A. Doğan for selecting the single.

  1. Research ethics: Not applicable.

  2. Author contributions: All authors have accepted responsibility for the entire content of this submitted manuscript and approved the submission.

  3. Competing interests: The authors declare no conflicts of interest regarding this article.

  4. Research funding: This research was funded by Universität Münster.

  5. Data availability: Data is available from the corresponding author on well-founded request.

References

1. Villars, P., Cenzual, K. Pearson’s Crystal Data – Crystal Structure Database for Inorganic Compounds; ASM International: Materials Park, Ohio, USA, 2022. Release 2022/23.Suche in Google Scholar

2. Burdett, J. K., Lee, S., McLarnan, T. J. J. Am. Chem. Soc. 1985, 107, 3083–3089; https://doi.org/10.1021/ja00297a012.Suche in Google Scholar

3. Parthé, E., Gelato, L., Chabot, B., Penzo, M., Cenzual, K., Gladyshevskii, R. TYPIX–Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types, Gmelin Handbook of Inorganic and Organometallic Chemistry, 8th ed.; Springer: Berlin (Germany), 1993.10.1007/978-3-662-10641-9Suche in Google Scholar

4. Miller, G. J. Eur. J. Inorg. Chem. 1998, 523–536.10.1002/(SICI)1099-0682(199805)1998:5<523::AID-EJIC523>3.0.CO;2-LSuche in Google Scholar

5. Miller, G. J. Z. Anorg. Allg. Chem. 2006, 632, 2078; https://doi.org/10.1002/zaac.200670006.Suche in Google Scholar

6. Pöttgen, R. Z. Anorg. Allg. Chem. 2014, 640, 869–891; https://doi.org/10.1002/zaac.201400023.Suche in Google Scholar

7. Ferro, R., Saccone, A. Intermetallic Chemistry; Elsevier: Amsterdam, 2008.Suche in Google Scholar

8. Steurer, W., Dshemuchadse, J. Intermetallics: Structures, Properties, and Statistics, IUCr Monographs on Crystallography, Vol. 26; Oxford University Press: New York, 2016.10.1093/acprof:oso/9780198714552.001.0001Suche in Google Scholar

9. Pöttgen, R., Johrendt, D. Intermetallics, 2nd ed.; De Gruyter: Berlin, 2019.10.1515/9783110636727Suche in Google Scholar

10. Block, T., Seidel, S., Pöttgen, R. Z. Kristallogr. 2022, 237, 215–218; https://doi.org/10.1515/zkri-2022-0021.Suche in Google Scholar

11. Rieger, W., Nowotny, H., Benesovsky, F. Monatsh. Chem. 1964, 95, 1502–1503; https://doi.org/10.1007/bf00901704.Suche in Google Scholar

12. Doğan, A., Rayaprol, S., Pöttgen, R. J. Phys.: Condens. Matter 2007, 19, 026209.10.1088/0953-8984/19/2/026209Suche in Google Scholar

13. Dhar, S. K., Settai, R., Ōnuki, Y., Galatanu, A., Haga, Y., Manfrinetti, P., Pani, M. J. Magn. Magn. Mater. 2007, 308, 143–152; https://doi.org/10.1016/j.jmmm.2006.05.013.Suche in Google Scholar

14. Pöttgen, R. Z. Naturforsch. 1994, 49b, 1309–1313.10.1515/znb-1994-1001Suche in Google Scholar

15. Gravereau, P., Mirambet, F., Chevalier, B., Weill, F., Fournès, L., Laffargue, D., Bourée, F., Etourneau, J. J. Mater. Chem. 1994, 4, 1893–1895; https://doi.org/10.1039/jm9940401893.Suche in Google Scholar

16. Lukachuk, M., Pöttgen, R. Z. Kristallogr. 2003, 218, 767–787; https://doi.org/10.1524/zkri.218.12.767.20545.Suche in Google Scholar

17. Sahlberg, M., Andersson, Y. Acta Crystallogr. C 2009, 65, i7–i8; https://doi.org/10.1107/s0108270109000766.Suche in Google Scholar

18. Reimann, M. K., Matar, S. F., Pöttgen, R. Z. Naturforsch. 2022, 77b, 693–702.10.1515/znb-2022-0101Suche in Google Scholar

19. Lueken, H. Magnetochemie; Teubner: Stuttgart, 1999.10.1007/978-3-322-80118-0Suche in Google Scholar

20. Palatinus, L. Acta Crystallogr. 2013, 69B, 1–16.10.1107/S0108768112051361Suche in Google Scholar PubMed

21. Palatinus, L., Chapuis, G. J. Appl. Crystallogr. 2007, 40, 786–790; https://doi.org/10.1107/s0021889807029238.Suche in Google Scholar

22. Petříček, V., Dušek, M., Palatinus, L. Z. Kristallogr. 2014, 229, 345–352.10.1515/zkri-2014-1737Suche in Google Scholar

23. Petříček, V., Palatinus, L., Plášil, J., Dušek, M. Z. Kristallogr. 2023, 238, 271–282.10.1515/zkri-2023-0005Suche in Google Scholar

24. Aroyo, M. I., Perez-Mato, J. M., Capillas, C., Kroumova, E., Ivantchev, S., Madariaga, G., Kirov, A., Wondratschek, H. Z. Kristallogr. 2006, 221, 15–27; https://doi.org/10.1524/zkri.2006.221.1.15.Suche in Google Scholar

25. Aroyo, M. I., Kirov, A., Capillas, C., Perez-Mato, J. M., Wondratschek, H. Acta Crystallogr. 2006, A62, 115–128.10.1107/S0108767305040286Suche in Google Scholar PubMed

26. Aroyo, M. I., Perez-Mato, J. M., Orobengoa, D., Tasci, E., de la Flor, G., Kirov, A. Bulg. Chem. Commun. 2011, 43, 183–197.Suche in Google Scholar

27. Diamond, Version 4.5; Crystal Impact, Bonn, Germany, 2018. http://www.crystalimpact.com.Suche in Google Scholar

28. CORELDRAW Graphics Suite 2023 (Version 24.3.0.571); Corel Corporation: Ottawa, Ontario (Canada), 2023.Suche in Google Scholar

29. Bärnighausen, H. Commun. Math. Chem. 1980, 9, 139–175.10.1007/BF01674443Suche in Google Scholar

30. Müller, U. Z. Anorg. Allg. Chem. 2004, 630, 1519–1537; https://doi.org/10.1002/zaac.200400250.Suche in Google Scholar

31. Müller, U., Wondratschek, H. International Tables for Crystallography, Vol. A1, Symmetry relations between Space Groups; John Wiley & Sons: Chichester, United Kingdom, 2010.10.1107/97809553602060000110Suche in Google Scholar

32. Müller, U. Symmetriebeziehungen zwischen verwandten Kristallstrukturen, 2nd ed.; Springer Spektrum Berlin: Heidelberg, Germany, 2023.10.1007/978-3-662-67166-5_12Suche in Google Scholar

33. Leineweber, A., Nitsche, H., Hlukhyy, V., Hoffmann, R.-D., Pöttgen, R. Intermetallics 2006, 14, 685–694; https://doi.org/10.1016/j.intermet.2005.11.002.Suche in Google Scholar

34. Mbarki, M., Touzani, R.St., Fokwa, B. P. T. J. Solid State Chem. 2013, 203, 304–306.10.1016/j.jssc.2013.04.018Suche in Google Scholar

35. Mbarki, M., Touzani, R.St., Rehorn, C. W. G., Gladisch, F. C., Fokwa, B. P. T. J. Solid State Chem. 2016, 242, 28–33; https://doi.org/10.1016/j.jssc.2016.01.012.Suche in Google Scholar

36. Touzani, R.St., Mbarki, M., Chen, X., Fokwa, B. P. T. Eur. J. Inorg. Chem. 2016, 4104–4110.10.1002/ejic.201600689Suche in Google Scholar

37. Engel, S., Gießelmann, E. C. J., Reimann, M. K., Pöttgen, R., Janka, O. ACS Organic & Inorganic Au 2024, 4, accepted for publication. https://doi.org/10.1021/acsorginorgau.3c00054.Suche in Google Scholar

38. Shastry, B. S., Sutherland, B. Physica B 1981, 108, 1069–1070.10.1016/0378-4363(81)90838-XSuche in Google Scholar

39. Miyahara, S., Ueda, K. Phys. Rev. Lett. 1999, 82, 3701–3704.10.1103/PhysRevLett.82.3701Suche in Google Scholar

40. Lee, J. Y., You, Y.-Z., Sachdev, S., Vishwanath, A. Phys. Rev. X 2019, 9, 041037.Suche in Google Scholar

41. Pöttgen, R., Arpe, P. E., Felser, C., Kußmann, D., Müllmann, R., Mosel, B. D., Künnen, B., Kotzyba, G. J. Solid State Chem. 1999, 145, 668–677; https://doi.org/10.1006/jssc.1998.8280.Suche in Google Scholar

42. Kim, M. S., Bennet, M. C., Aronson, M. C. Phys. Rev. B 2008, 77, 144425.10.1103/PhysRevE.77.049903Suche in Google Scholar

43. Kim, M. S., Bennet, M. C., Aronson, M. C. Physica B 2008, 403, 1411–1413; https://doi.org/10.1016/j.physb.2007.10.160.Suche in Google Scholar

44. Klenner, S., Pöttgen, R. Rare earth transition metal plumbides – an update. In Handbook on the Physics and Chemistry of Rare Earths; Pecharsky, V. K., Bünzli, J.-C., Eds. North-Holland/Elsevier: Amsterdam, Chapter 312, Vol. 57, 2020; 1–44.10.1016/bs.hpcre.2020.06.001Suche in Google Scholar

45. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Suche in Google Scholar

46. Matar, S. F., Pöttgen, R., Chevalier, B. Intermetallics 2014, 51, 18–23; https://doi.org/10.1016/j.intermet.2014.02.018.Suche in Google Scholar

47. Takahashi, R., Honda, T., Miyake, A., Kagayama, T., Shimizu, K., Ebihara, T., Kimura, T., Wakabayashi, Y. Phys. Rev. B 2013, 88, 054109; https://doi.org/10.1103/physrevb.88.054109.Suche in Google Scholar

48. Niepmann, D., Prots, Y. M., Pöttgen, R., Jeitschko, W. J. Solid State Chem. 2000, 154, 329–337; https://doi.org/10.1006/jssc.2000.8789.Suche in Google Scholar

49. Pöttgen, R., Lang, A., Hoffmann, R.-D., Künnen, B., Kotzyba, G., Müllmann, R., Mosel, B. D., Rosenhahn, C. Z. Kristallogr. 1999, 214, 143–150.10.1524/zkri.1999.214.3.143Suche in Google Scholar

50. Muro, Y., Yamane, K., Kim, M.-S., Takabatake, T., Godart, C., Rogl, P. J. Phys. Soc. Jpn. 2003, 72, 1745–1750; https://doi.org/10.1143/jpsj.72.1745.Suche in Google Scholar

Received: 2023-10-09
Accepted: 2023-11-13
Published Online: 2023-12-25
Published in Print: 2024-01-29

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 17.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zkri-2023-0043/html
Button zum nach oben scrollen