Home The HfFe2Si2 type silicides ScT2Si2 (T = Ru, Rh, Os) – structure and solid-state 29Si/45Sc NMR spectroscopy
Article
Licensed
Unlicensed Requires Authentication

The HfFe2Si2 type silicides ScT2Si2 (T = Ru, Rh, Os) – structure and solid-state 29Si/45Sc NMR spectroscopy

  • Aylin Koldemir , Josef Maximilian Gerdes , Maximilian Kai Reimann , Michael Ryan Hansen EMAIL logo and Rainer Pöttgen EMAIL logo
Published/Copyright: December 19, 2023

Abstract

The silicides ScT2Si2 (T = Ru, Rh, Os) were synthesized by arc-melting of the elements and subsequent annealing in sealed silica ampoules. They crystallize with the rarely observed HfFe2Si2 type structure, space group Pbcm. The structures of ScRu2Si2 (a = 761.64(4), b = 730.70(6), c = 521.07(6) pm, wR = 0.0314, 633 F2 values, 31 variables) and ScOs2Si2 (a = 771.10(8), b = 736.68(7), c = 521.88(5) pm, wR = 0.0479, 623 F2 values, 31 variables) were refined from single crystal X-ray diffractometer data. The refinements showed small degrees of Ru/Si respectively Os/Si mixing on one 4c site, leading to the refined compositions ScRu1.96(1)Si2.04(1) and ScOs1.91(1)Si2.09(1). The monomeric building units in both structures are two slightly distorted, crystallographically independent RuSi5 respectively OsSi5 square pyramids, which are condensed via common edges. The resulting densely packed [Ru2Si2] and [Os2Si2] networks leave voids for the scandium atoms with coordination number 18: Sc@Si8Ru8Sc2 and Sc@Si8Os8Sc2. Temperature dependent magnetic susceptibility measurements of ScRu2Si2 and ScOs2Si2 indicate Pauli paramagnetism. Solid-state 29Si and 45Sc static and MAS NMR spectroscopy reveal significant Knight shifts and a strong influence of the T/Si mixing on the experimental NMR line shapes. A larger overall 29Si magnetic shift for ScRu2Si2 compared to ScOs2Si2, although with a negative sign for one of the 29Si resonances, suggests stronger paramagnetic effects for ScRu2Si2, in agreement with the magnetic susceptibility measurements.


Corresponding authors: Rainer Pöttgen, Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany, E-mail: ; and Michael Ryan Hansen, Institut für Physikalische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany, E-mail:

Acknowledgments

We thank Dipl.-Ing. J. Kösters for the intensity data collections.

  1. Research ethics: Not applicable.

  2. Author contributions: All authors have accepted responsibility for the entire content of this submitted manuscript and approved the submission.

  3. Competing interests: The authors declare no conflicts of interest regarding this article.

  4. Research funding: This research was funded by Universität Münster and Deutsche Forschungsgemeinschaft (INST 211/1034-1).

  5. Data availability: Data is available from the corresponding author on well-founded request.

References

1. Hoffmann, R., Zheng, C. J. Phys. Chem. 1985, 89, 4175–4181; https://doi.org/10.1021/j100266a007.Search in Google Scholar

2. Just, G., Paufler, P. J. Alloys Compd. 1996, 232, 1–25; https://doi.org/10.1016/0925-8388(95)01939-1.Search in Google Scholar

3. Shatruk, M. J. Solid State Chem. 2019, 272, 198–209; https://doi.org/10.1016/j.jssc.2019.02.012.Search in Google Scholar

4. Szytuła, A., Leciejewicz, J. Handbook of Crystal Structures and Magnetic Properties of Rare Earth Intermetallics; CRC Press: Boca Raton, 1994.Search in Google Scholar

5. Andress, K. R., Alberti, E. Z. Metallkd. 1935, 27, 126–128.10.1163/187124035X00090Search in Google Scholar

6. Ban, Z., Sikirica, M. Acta Crystallogr. 1965, 18, 594–599; https://doi.org/10.1107/s0365110x6500141x.Search in Google Scholar

7. Lai, Y., Chan, J. Y., Baumbach, R. E. Sci. Adv. 2022, 8, eabp8264; https://doi.org/10.1126/sciadv.abp8264.Search in Google Scholar PubMed PubMed Central

8. Parthé, E., Chabot, B., Braun, H. F., Engel, N. Acta Crystallogr. 1983, B39, 588–595.10.1107/S010876818300302XSearch in Google Scholar

9. Kußmann, D., Pöttgen, R., Rodewald, U. Ch., Rosenhahn, C., Mosel, B. D., Kotzyba, G., Künnen, B. Z. Naturforsch. 1999, 54b, 1155–1164.10.1515/znb-1999-0911Search in Google Scholar

10. Johnston, D. C. Adv. Phys. 2010, 59, 803–1061; https://doi.org/10.1080/00018732.2010.513480.Search in Google Scholar

11. Johrendt, D., Hosono, H., Hoffmann, R.-D., Pöttgen, R. Z. Kristallogr. 2011, 226, 435–446; https://doi.org/10.1524/zkri.2011.1363.Search in Google Scholar

12. Kneidinger, F., Salamakha, L., Bauer, E., Zeiringer, I., Rogl, P., Blaas-Schenner, C., Reith, D., Podloucky, R. Phys. Rev. B 2014, 90, 024504; https://doi.org/10.1103/physrevb.90.024504.Search in Google Scholar

13. Pöttgen, R. Z. Anorg. Allg. Chem. 2014, 640, 869–891; https://doi.org/10.1002/zaac.201400023.Search in Google Scholar

14. Seidel, S., Pöttgen, R. Z. Naturforsch. 2021, 76b, 249–262.10.1515/znb-2021-0022Search in Google Scholar

15. Villars, P., Cenzual, K. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2022/23); ASM International®: Materials Park, Ohio (USA), 2022.Search in Google Scholar

16. Rühl, R., Jeitschko, W. Mater. Res. Bull. 1979, 14, 513–517; https://doi.org/10.1016/0025-5408(79)90194-6.Search in Google Scholar

17. Peng, W., Chanakian, S., Zevalkink, A. Inorg. Chem. Front. 2018, 5, 1744–1759; https://doi.org/10.1039/c7qi00813a.Search in Google Scholar

18. Stoyko, S. S., Blanchard, P. E. R., Ramachandran, K. K., Mar, A. J. Solid State Chem. 2019, 269, 100–106; https://doi.org/10.1016/j.jssc.2018.09.021.Search in Google Scholar

19. Yarmolyuk, Y. P., Lysenko, L. A., Gladyshevskii, E. I. Sov. Phys. Crystallogr. 1976, 21, 473–475.Search in Google Scholar

20. Gladyshevskii, E. I., Kotur, B. Y., Bodak, O. I., Skvorchuk, V. P. Dopov. Akad. Nauk Ukr. RSR, Ser. A 1977, 751–754.Search in Google Scholar

21. Kotur, B. Y., Dobryanskaya, D. O., Shcherba, I. D. Tezizy Dokl. Vses. Konf. Kristallokhim. Intermet. Soeden., 5th, 1989; p. 161.Search in Google Scholar

22. Shcherba, I. D., Kotur, B. Y. Sov. Phys. Crystallogr. 1990, 35, 136–138.Search in Google Scholar

23. Kotur, B. Y., Cerny, R., Pacheco, J. V., Yvon K. Z. Kristallogr. NCS 1997, 212, 289; https://doi.org/10.1524/ncrs.1997.212.1.289.Search in Google Scholar

24. Felner, I., Mayer, I., Grill, A., Schieber, M. Solid State Commun. 1975, 16, 1005–1009; https://doi.org/10.1016/0038-1098(75)90640-7.Search in Google Scholar

25. Umarji, A. M., Noakes, D. R., Viccaro, P. J., Shenoy, G. K., Aldred, A. T., Niarchos, D. J. Magn. Magn. Mater. 1983, 36, 61–65; https://doi.org/10.1016/0304-8853(83)91044-2.Search in Google Scholar

26. Shcherba, I., Sacharevych, M., Savyckyj, N., Antonov, V., Jatcyk, B. J. Mater. Sci. Eng. B 2015, 5, 42–49.Search in Google Scholar

27. Shcherba, I. D., Antonov, V. N., Zhak, O. V., Bekenov, L. V., Kovalska, M. V., Noga, H., Uskokovic, D., Yatcyk, B. M. J. Phys. Stud. 2019, 23, 2301; https://doi.org/10.30970/jps.23.2301.Search in Google Scholar

28. Skolozdra, R. V., Stadnyk, Yu. V., Gorelenko, Yu. K., Yarmolyuk, Ya. P., Kruglyashov, S. B. Fiz. Met. Metalloved. 1983, 55, 479–483.Search in Google Scholar

29. Eckert, H., Pöttgen, R. Z. Anorg. Allg. Chem. 2010, 636, 2232–2243; https://doi.org/10.1002/zaac.201000197.Search in Google Scholar

30. Hoffmann, R.-D., Rodewald, U. Ch., Haverkamp, S., Benndorf, C., Eckert, H., Heying, B., Pöttgen, R. Solid State Sci. 2017, 72, 109–115; https://doi.org/10.1016/j.solidstatesciences.2017.07.017.Search in Google Scholar

31. Harmening, T., Al Alam, A., Matar, S. F., Eckert, H., Pöttgen, R. Solid State Sci. 2009, 11, 1239–1245; https://doi.org/10.1016/j.solidstatesciences.2009.03.015.Search in Google Scholar

32. Harmening, T., Mohr, D., Eckert, H., Al Alam, A., Matar, S. F., Pöttgen, R. Z. Anorg. Allg. Chem. 2010, 636, 1839–1850; https://doi.org/10.1002/zaac.200900529.Search in Google Scholar

33. Kotur, B. Y. Visn. Lviv. Derzh. Univ., Ser. Khim. 1984, 25, 20–21.Search in Google Scholar

34. Pöttgen, R., Gulden, Th., Simon, A. GIT Labor-Fachzeitschrift 1999, 43, 133–136.Search in Google Scholar

35. Yvon, K., Jeitschko, W., Parthé, E. J. Appl. Crystallogr. 1977, 10, 73–74; https://doi.org/10.1107/s0021889877012898.Search in Google Scholar

36. Palatinus, L. Acta Crystallogr. 2013, 69B, 1–16.10.1107/S0108768112051361Search in Google Scholar PubMed

37. Palatinus, L., Chapuis, G. J. Appl. Crystallogr. 2007, 40, 786–790; https://doi.org/10.1107/s0021889807029238.Search in Google Scholar

38. Petříček, V., Dušek, M., Palatinus, L. Z. Kristallogr. 2014, 229, 345–352.10.1515/zkri-2014-1737Search in Google Scholar

39. ORIGINPRO 2016G (version 9.3.2.303), OriginLab Corporation: Northampton, Massachusetts (USA), 2016.Search in Google Scholar

40. CORELDRAW Graphics Suite 2017 (version 19.0.0.328), Corel Corporation: Ottawa, Ontario (Canada), 2017.Search in Google Scholar

41. Koppe, J., Bußkamp, M., Hansen, M. R. J. Phys. Chem. A 2021, 125, 5643–5649; https://doi.org/10.1021/acs.jpca.1c02958.Search in Google Scholar PubMed

42. O’Dell, L. A., Schurko, R. W. Chem. Phys. Lett. 2008, 464, 97–102; https://doi.org/10.1016/j.cplett.2008.08.095.Search in Google Scholar

43. O’Dell, L. A., Rossini, A. J., Schurko, R. W. Chem. Phys. Lett. 2009, 468, 330–335; https://doi.org/10.1016/j.cplett.2008.12.044.Search in Google Scholar

44. Blaha, P., Schwarz, K., Tran, F., Laskowski, R., Madsen, G. K. H., Marks, L. D. J. Chem. Phys. 2020, 152, 074101; https://doi.org/10.1063/1.5143061.Search in Google Scholar PubMed

45. Perdew, J. P., Burke, K., Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865–3868; https://doi.org/10.1103/physrevlett.77.3865.Search in Google Scholar

46. Zhao, J. T., Parthé, E. Acta Crystallogr. 1991, C47, 1781–1784.10.1107/S0108270191003037Search in Google Scholar

47. Flandorfer, H., Kaczorowski, D., Gröbner, J., Rogl, P., Wouters, R., Godart, C., Kostikas, A. J. Solid State Chem. 1998, 137, 191–205; https://doi.org/10.1006/jssc.1997.7660.Search in Google Scholar

48. Cordier, G., Woll, P., Schäfer, H. J. Less-Common Met. 1982, 86, 129–136; https://doi.org/10.1016/0022-5088(82)90197-7.Search in Google Scholar

49. Xia, S.-Q., Bobev, S. J. Solid State Chem. 2006, 179, 3371–3377; https://doi.org/10.1016/j.jssc.2006.07.003.Search in Google Scholar

50. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Search in Google Scholar

51. Harmening, T., Eckert, H., Fehse, C. M., Sebastian, C. P., Pöttgen, R. J. Solid State Chem. 2011, 184, 3303–3309; https://doi.org/10.1016/j.jssc.2011.10.025.Search in Google Scholar

52. Cenzual, K., Gladyshevskii, R. E., Parthé, E. Acta Crystallogr. C 1992, 48, 225–228; https://doi.org/10.1107/s010827019100968x.Search in Google Scholar

53. Kawai, T., Muranaka, H., Measson, M.-A., Shimoda, T., Doi, Y., Matsuda, T. D., Haga, Y., Knebel, G., Lapertot, G., Aoki, D., Flouquet, J., Takeuchi, T., Settai, R., Ōnuki, Y. J. Phys. Soc. Jpn. 2008, 77, 064716; https://doi.org/10.1143/jpsj.77.064716.Search in Google Scholar

54. Donohue, J. The Structures of the Elements; Wiley: New York, 1974.Search in Google Scholar

55. Prakash, J., Mesbah, A., Beard, J. C., Malliakas, C. D., Ibers, J. A. J. Solid State Chem. 2016, 233, 90–94; https://doi.org/10.1016/j.jssc.2015.10.003.Search in Google Scholar

56. Haeberlen, U. In: Advances in Magnetic Resonance, Suppl. 1; Waugh, J. S., Ed. Academic Press: New York, 1976.Search in Google Scholar

57. Mehring, M. Principles of High Resolution NMR in Solids, 2nd ed.; Springer Verlag: Berlin, 1983.10.1007/978-3-642-68756-3Search in Google Scholar

58. Spiess, H. W. In: NMR Basic Principles and Progress; Diehl, P., Fluck, E., Kosfeld, R., Eds. Springer Verlag, Berlin, Vol. 15, 1978.Search in Google Scholar

Received: 2023-10-24
Accepted: 2023-11-22
Published Online: 2023-12-19
Published in Print: 2024-01-29

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 14.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zkri-2023-0048/html
Scroll to top button