Startseite An asymmetric mononuclear cobalt(II) compound derived from 3-bromo-pyridine-2,6-dicarboxylic acid involving in-situ hydrothermal decarboxylation: structure, magnetic property and Hirshfeld surface analysis
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

An asymmetric mononuclear cobalt(II) compound derived from 3-bromo-pyridine-2,6-dicarboxylic acid involving in-situ hydrothermal decarboxylation: structure, magnetic property and Hirshfeld surface analysis

  • Jun-Xia Li EMAIL logo , Shuai Ge , Yi-Jing Lu , Xiao-Jie Xu , Chang Liu und Shi-Hui Li EMAIL logo
Veröffentlicht/Copyright: 20. Februar 2023

Abstract

A new cobalt(II) compound with the formula [Co(5-Br-pyc)(2,2′-bipy)(H2O)(Cl)]·2H2O (1·H2O) (5-Br-Hpyc = 5-bromo-pyridine-2-carboxylic acid, 2,2′-bipy = 2,2′-bipyridine) has been hydrothermally synthesized and well characterized. The X-ray single-crystal diffraction analysis showed that 1⋅2H2O has crystallizes in the monoclinic system, space group P21/c (no. 14). The Co(II) center was octahedrally bonded by one bidentate chelate 5-Br-pyc anion and one 2,2′-bipy, one water molecule as well as one chloride anion to form the mononuclear structure of 1⋅2H2O. Complex 1⋅2H2O forms a 3D network through abundant O–H⋅⋅⋅O hydrogen bonds and π⋅⋅⋅π stacking interactions. Notably, the 5-Br-Hpyc ligand was in situ generated by decarboxylation of the 3-bromo-pyridine-2,6-dicarboxylic acid (3-Br-H2pydc) precursor selectively on 2-position under hydrothermal conditions. The magnetic properties, the Hirshfeld surface structure and the synthetic process for 1⋅2H2O have been carefully described and discussed.


Corresponding authors: Jun-Xia Li and Shi-Hui Li, Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, Henan Province, 471934, P. R. China, E-mail: (J.-X. Li) and

Funding source: Key scientific research projects in colleges

Award Identifier / Grant number: 21A150036

Funding source: Universities of Henan province

Award Identifier / Grant number: 23A150002

  1. Author contributions: Jun-Xia Li: Methodology, conceptualization, data curation, software, writing-original draft, writing-review and editing. Shuai Ge: Formal analysis. Yi-Jing Lu: Writing draft. Xiao-Jie Xu: Software, validation. Chang Liu: Data curation. Shi-Hui Li: Conceptualization, resources, writing-review and editing.

  2. Research funding: This work was supported by the key scientific research projects in colleges and universities of Henan province (No. 21A150036 and 23A150002).

  3. Conflict of interest statement: The authors declare that they have no conflicts of interest.

  4. Code availability: Not applicable.

References

1. Atia, B. M., Khawassek, Y. M., Hussein, G. M., Gado, M. A., El-Sheify, M. A., Cheira, M. F. One-pot synthesis of pyridine dicarboxamide derivative and its application for uranium separation from acidic medium. J. Environ. Chem. Eng. 2021, 9, 105726; https://doi.org/10.1016/j.jece.2021.105726.Suche in Google Scholar

2. Krinochkin, A. P., Shabunina, O. V., Savchuk, M. I., Kudryashova, E. A., Rybakova, S. S., Ladin, E. D., Kopchuk, D. S., Zyryanov, G. V., Chupakhin, O. N. Efficient synthesis of 3-(4-carboxyphenyl) pyridine-2,6-dicarboxylic acid. Russ. J. Org. Chem. 2022, 58, 917–919; https://doi.org/10.1134/S1070428022060239.Suche in Google Scholar

3. Tang, R. R., Zhao, Q., Yan, Z. E., Luo, Y. M. Synthesis of novel derivatives of pyridine-2,6-dicarboxylic acid. Synth. Commun. 2006, 36, 2027–2034; https://doi.org/10.1080/00397910600634381.Suche in Google Scholar

4. Vydrina, V. A., Denisova, K. S., Yakovleva, M. P., Vyrypaev, E. M., Tolstikov, A. G., Ishmuratov, G. Y. Synthesis of macroheterocycles containing pyridine-2,6-dicarboxylic and adipic acid ester and hydrazide fragments starting from tetrahydropyran. Russ. J. Org. Chem. 2020, 56, 2236–2239; https://doi.org/10.1134/S1070428020120295.Suche in Google Scholar

5. Devi, P., Barry, S. M., Houlihan, K. M., Murphy, M. J., Turner, P., Jensen, P., Rutledge, P. J. Synthesis and structural characterisation of amides from picolinic acid and pyridine-2,6-dicarboxylic acid. Sci. Rep. 2015, 5, 9950; https://doi.org/10.1038/srep09950.Suche in Google Scholar PubMed PubMed Central

6. Islam, S., Tripathi, S., Hossain, A., Seth, S. K., Mukhopadhyay, S. pH-induced structural variations of two new Mg(II)-PDA complexes: experimental and theoretical studies. J. Mol. Struct. 2022, 1265, 133373; https://doi.org/10.1016/j.molstruc.2022.133373.Suche in Google Scholar

7. Sharif, S., Saeed, M., Dege, N., Bano, R., Ahmad, S., Gilani, M. A., Sahin, O., Ahmad, S., Ch, A. R. Solvothermal synthesis, crystal structure, thermal, magnetic properties and DFT computations of a ytterbium(III) complex derived from pyridine-2,6-dicarboxylic acid. J. Mol. Struct. 2022, 1260, 132877; https://doi.org/10.1016/j.molstruc.2022.132877.Suche in Google Scholar

8. Suku, S., Ravindran, R. Synthesis, characterization and antimicrobial studies of 1D hetero-bimetallic coordination polymers of pyridine-2,6-dicarboxylic acid with iron and alkaline earth metals. J. Mol. Struct. 2021, 1252, 132083; https://doi.org/10.1016/j.molstruc.2021.132083.Suche in Google Scholar

9. Abdolmaleki, S., Ghadermazi, M., Aliabadi, A. Study on electrochemical behavior and in vitro anticancer effect of Co(II) and Zn(II) complexes containing pyridine-2,6-dicarboxylate. Inorg. Chim. Acta 2021, 527, 120549; https://doi.org/10.1016/j.ica.2021.120549.Suche in Google Scholar

10. Li, J. X., Du, Z. X. Syntheses, structures and magnetic properties of two mononuclear nickel(II) complexes based on bicarboxylate ligands. Z. Naturforsch. 2015, 70b, 505–511; https://doi.org/10.1515/znb-2015-0010.Suche in Google Scholar

11. Zou, J. P., Chen, M. H., Zhang, L. Z., Xing, Q. J., Xiong, Z. Q. Syntheses, structures and optical properties of a series of lanthanide complexes with chelidamic acid and 4,4′-bipyridyl. J. Chem. Crystallogr. 2011, 41, 1820–1833; https://doi.org/10.1007/s10870-011-0179-3.Suche in Google Scholar

12. Zhao, X. Q., Cui, P., Zhao, B., Shi, W., Cheng, P. Investigation on structures, luminescent and magnetic properties of LnIII-M (M = FeIIHS, CoII) coordination polymers. Dalton Trans. 2011, 40, 805–819; https://doi.org/10.1039/c0dt00516a.Suche in Google Scholar PubMed

13. Vural, H., Uçar, İ., Soylu, M. S. Combined experimental–theoretical characterization of chelidamate nickel complex with 4-methylpyrimidine. Spectrochim. Acta A 2016, 152, 584–590; https://doi.org/10.1016/j.saa.2014.12.118.Suche in Google Scholar PubMed

14. Derikvand, Z., Azadbakht, A., Notash, B., Zamanifar, E. A new supramolecular coordination compound of Mg(II) with chelidamic acid: synthesis, spectroscopic, crystal structures, and thermal analysis. Inorg. Nano-Met. Chem. 2017, 47, 515–520; https://doi.org/10.1080/15533174.2016.1186077.Suche in Google Scholar

15. Zhao, X. Q., Zhao, B., Shi, W., Cheng, P. Synthesis, structures, and luminescent and magnetic properties of Ln−Ag heterometal−organic frameworks. Inorg. Chem. 2009, 48, 11048–11057; https://doi.org/10.1021/ic901291b.Suche in Google Scholar PubMed

16. Abdolmaleki, S., Ghadermazi, M., Fattahi, A., Sheshmani, S. Synthesis, characterization, spectral studies and cytotoxic effects of mixed-ligand mono and binuclear copper(II) complexes and their amide ligands. Inorg. Chim. Acta 2016, 443, 284–298; https://doi.org/10.1016/j.ica.2016.01.016.Suche in Google Scholar

17. Cantos, P. M., Pope, S. J. A., Cahill, C. L. An exploration of homo- and heterometallic UO22+ hybrid materials containing chelidamic acid: synthesis, structure, and luminescence studies. CrystEngComm 2013, 15, 9039–9051; https://doi.org/10.1039/C3CE41655K.Suche in Google Scholar

18. Cline, S. J., Kallesoe, S., Pedersen, E., Hodgson, D. J. Structural and magnetic characterization of the chromium(III) dimers di-μ-hydroxo-bis[(4-hydroxo-2,6-dicarboxylatopyridine)aqua chromium(III)] tetrahydrate, [Cr(chel)(OH2)OH]2·4H2O, and di-μ-hydroxo-bis[(4-chloro-2,6- dicarboxylatopyridine)aquachromium(III)] dihydrate, [Cr(Cl-dipic)(OH2)OH]2·2H2O. Inorg. Chem. 1979, 18, 796–801; https://doi.org/10.1021/ic50193a052.Suche in Google Scholar

19. Ou, C. C., Wollmann, R. G., Hendrickson, D. N., Potenza, J. A., Schugar, H. J. Molecular structure and magnetic properties of μ-oxo-bis[4-chloro-2,6-pyridinedicarboxylatodiaquo iron(III)] tetrahydrate, [Cl-C7H2NO4(H2O)2Fe]2O·4H2O, a complex with linear Fe2O4+ unit. J. Am. Chem. Soc. 1978, 100, 4717–4724; https://doi.org/10.1021/ja00483a015.Suche in Google Scholar

20. Zhao, X. Q., Zhao, B., Shi, W., Cheng, P., Liao, D. Z., Yan, S. P. Self-assembly of novel 3d-4d-4f heterometal-organic framework based on double-stranded helical motifs. Dalton Trans. 2009, 2281–2283; https://doi.org/10.1039/b821295n.Suche in Google Scholar PubMed

21. Du, Z. X., Li, J. X., Liu, S. J., Wang, Z. Q., Pan, Q. J. The syntheses, structures, and magnetic properties of two mononuclear manganese(II) complexes involving in situ hydrothermal decarboxylation. Z. Naturforsch. 2020, 75b, 567–575; https://doi.org/10.1515/znb-2020-0036.Suche in Google Scholar

22. Hu, P., Xiao, F. P., Wu, Y. F., Yang, X. M., Li, N., Wang, H. K., Jia, J. F. Covalent encapsulation of sulfur in a graphene/N-doped carbon host for enhanced sodium-sulfur batteries. Chem. Eng. J. 2022, 443, 136257. https://doi.org/10.1016/j.cej.2022.136257.Suche in Google Scholar

23. Qin, L., Li, Y., Liang, F. L., Li, L. J., Lan, Y. W., Li, Z. Y., Lu, X. T., Yang, M. Q., Ma, D. Y. A microporous 2D cobalt-based MOF with pyridyl sites and open metal sites for selective adsorption of CO2. Micropor. Mesopor. Mat. 2022, 341, 112098. https://doi.org/10.1016/j.micromeso.2022.112098.Suche in Google Scholar

24. Liang, Y. J., Hu, D., Zhang, L., Jiang, Y., Li, J. X. The synthesis and properties of a sodium supramolecular crystal network constructed with functional pyrazine sulfonic acid. J. Struct. Chem. 2021, 62, 1801–1809. https://doi.org/10.1134/S0022476621110172.Suche in Google Scholar

25. Li, J.-X., Ge, S., Lu, Y.-J., Quan, K.-Y., Wu, L.-B., Wang, A.-R. A new copper(II) complex containing triclopyr: one-pot crystallization, structure, conformation and Hirshfeld surface analyses. Z. Kristallogr. 2023, 238, 129–137. https://doi.org/10.1515/zkri-2022-0063.Suche in Google Scholar

26. Li, J. X., Zhang, T., Chen, H. J., Du, Z. X. A (4,4)-connected zinc(II) coordination polymer constructed with the flexible 2-carboxy phenoxyacetate ligand: synthesis, conformation alteration and fluorescent properties. Z. Kristallogr. 2021, 236, 251–259. https://doi.org/10.1515/zkri-2021-2043.Suche in Google Scholar

27. Zhou, Z., Wang, Y., Peng, F., Meng, F., Zha, J., Ma, L., Du, Y., Peng, N., Ma, L., Zhang, Q., Gu, L., Yin, W., Gu, Z., Tan, C. Intercalation-activated layered MoO3 nanobelts as biodegradable Nanozymes for tumor-specific photo-enhanced catalytic therapy. Angew. Chem. Int. Ed. 2022, 61, e202115939; https://doi.org/10.1002/anie.202115939.Suche in Google Scholar PubMed

28. Zhao, X., He, X., Hou, A., Cheng, C., Wang, X., Yue, Y., Wu, Z., Wu, H., Liu, B., Li, H., Shen, J., Tan, C., Zhou, Z., Ma, L. Growth of Cu2O nanoparticles on two-dimensional Zr-ferrocene-metal-organic framework nanosheets for photothermally enhanced chemodynamic antibacterial therapy. Inorg. Chem. 2022, 61, 9328–9338; https://doi.org/10.1021/acs.inorgchem.2c01091.Suche in Google Scholar PubMed

29. Hu, P., Xiao, F. P., Wang, H. K., Rogach, A. L. Dual-functional hosts derived from metal-organic frameworks reduce dissolution of polyselenides and inhibit dendrite growth in a sodium-selenium battery. Energy Storage Mater. 2022, 51, 249–258; https://doi.org/10.1016/j.ensm.2022.06.019.Suche in Google Scholar

30. Li, J. X., Xiong, L. Y., Xu, X. J., Liu, C., Wang, Z. G. The synthesis, crystal structure and conformation analysis of triclopyr ethyl ester. Z. Kristallogr. 2022, 237, 385–391; https://doi.org/10.1515/zkri-2022-0047.Suche in Google Scholar

31. Liang, Y. J., Feng, G., Zhang, X., Li, J. X., Jiang, Y. Bis(pyridyl) ancillary ligands and pyrazine sulfonic acid in the synthesis of two Ag(I) supramolecular structures and fluorescent properties of the latter. J. Struct. Chem. 2021, 62, 300–308; https://doi.org/10.1134/s0022476621020153.Suche in Google Scholar

32. Hu, H., Quan, J., Tan, Z., Fu, J. H., Liang, Y. J., Li, J. X. Synthesis and properties of dimercury(I) crystal network constructed with functionalized pyrazine sulfonate and nitrate linkers. Russ. J. Gen. Chem. 2021, 91, 910–914; https://doi.org/10.1134/S1070363221050224.Suche in Google Scholar

33. Li, J. X., Du, Z. X., Xiong, L. Y., Fu, L. L., Bo, W. B. Supramolecular isomerism in two nickel(II) coordination polymers constructed with the flexible 2-carboxyphenoxyacetate linker: syntheses, structure analyses and magnetic properties. J. Solid State Chem. 2021, 293, 121799; https://doi.org/10.1016/j.jssc.2020.121799.Suche in Google Scholar

34. Li, R. F., Zhang, H., Hong, M. Z., Shi, J. G., Liu, X. F., Feng, X. Two Co(II)/Ni(II) complexes based on nitrogenous heterocyclic ligand as high-performance electrocatalyst for hydrogen evolution reaction. Dalton Trans. 2022, 51, 3970–3976; https://doi.org/10.1039/D1DT03814A.Suche in Google Scholar

35. He, W., Zhou, Z., Han, Z., Li, S., Zhou, Z., Ma, L., Zang, S. Ultrafast size expansion and turn-on luminescence of atomically precise silver clusters by hydrogen sulfide. Angew. Chem. Int. Ed. 2021, 60, 8505–8509; https://doi.org/10.1002/anie.202100006.Suche in Google Scholar PubMed

36. Zheng, Z., Xu, P., Jiang, Y. M., Liang, Y. J., Li, J. X. “Soft–hard” strategy to construct a pyrazine sulfonic acid copper(II) supramolecular structure and a study of its fluorescent property. J. Struct. Chem. 2021, 62, 292–299; https://doi.org/10.1134/s0022476621020141.Suche in Google Scholar

37. Li, J. X., Xiong, L. Y., Fu, L. L., Bo, W. B., Du, Z. X., Feng, X. Structural diversity of Mn(II) and Cu(II) complexes based on 2-carboxyphenoxyacetate linker: syntheses, conformation comparison and magnetic properties. J. Solid State Chem. 2022, 305, 122636; https://doi.org/10.1016/j.jssc.2021.122636.Suche in Google Scholar

38. Zhang, X. M. Hydro(solvo)thermal in situ ligand syntheses. Coord. Chem. Rev. 2005, 249, 1201–1219; https://doi.org/10.1016/j.ccr.2005.01.004.Suche in Google Scholar

39. Yang, A. H., Zou, J. Y., Wang, W. M., Shi, X. Y., Gao, H. L., Cui, J. Z., Zhao, B. Two three- dimensional lanthanide frameworks exhibiting luminescence increases upon dehydration and novel water layer involving in situ decarboxylation. Inorg. Chem. 2014, 53, 7092–7100; https://doi.org/10.1021/ic402803s.Suche in Google Scholar PubMed

40. You, L. X., Li, Z. G., Ding, F., Wang, S. J., Ren, B. Y., Sun, Y. G. Synthesis, structure and luminescence properties of lanthanide coordination polymers using in situ decarboxylation of a H3cppdc ligand. Inorg. Chem. Commun. 2014, 46, 340–343; https://doi.org/10.1016/j.inoche.2014.05.011.Suche in Google Scholar

41. Ay, B., Şahin, O., Yildiz, E. One-Pot hydrothermal synthesis of 1D copper (II) coordination polymers involving in-situ decarboxylation. Solid State Sci. 2019, 96, 105958; https://doi.org/10.1016/j.solidstatesciences.2019.105958.Suche in Google Scholar

42. Zhang, J., Li, J. X. Synthesis, structure and magnetic properties of a binuclear copper(II) complex constructed by a new coordination mode of the tetrachlorophthalate ligand. Z. Naturforsch. 2016, 71b, 45–49. https://doi.org/10.1515/znb-2015-0135.Suche in Google Scholar

43. Li, J. X., Zhang, Y. H., Du, Z. X., Feng, X. One-pot solvothermal synthesis of mononuclear and oxalate-bridged binuclear nickel compounds: structural analyses, conformation alteration and magnetic properties. Inorg. Chim. Acta 2022, 530, 120697; https://doi.org/10.1016/j.ica.2021.120697.Suche in Google Scholar

44. Li, R. F., Wang, M. Z., Liu, X. F., Feng, X. Near-infrared luminescence and magnetism of several lanthanide polymers by biphenyl carboxylic acid ligand. Inorg. Chim. Acta 2022, 539, 121029; https://doi.org/10.1016/j.ica.2022.121029.Suche in Google Scholar

45. Li, J. X., Du, Z. X., Pan, Q. Y., Zhang, L. L., Liu, D. L. The first 3,5,6-trichloropyridine-2-oxyacetate bridged manganese coordination polymer with features of π⃛π stacking and halogen⃛halogen interactions: synthesis, crystal analysis and magnetic properties. Inorg. Chim. Acta 2020, 509, 119677; https://doi.org/10.1016/j.ica.2020.119677.Suche in Google Scholar

46. Li, J. X., Du, Z. X. A binuclear cadmium(II) cluster based on π···π stacking and halogen···halogen interactions: synthesis, crystal analysis and fluorescent properties. J. Cluster Sci. 2020, 31, 507–511.10.1007/s10876-019-01666-wSuche in Google Scholar

47. Li, J. X., Du, Z. X., Zhang, L. L., Liu, D. L., Pan, Q. Y. Doubly mononuclear cocrystal and oxalato-bridged binuclear copper compounds containing flexible 2-((3,5,6-trichloropyridin-2-yl)oxy) acetate tectons: synthesis, crystal analysis and magnetic properties. Inorg. Chim. Acta 2020, 512, 119890; https://doi.org/10.1016/j.ica.2020.119890.Suche in Google Scholar

48. CrysAlisPro, single Crystal X-ray diffraction data collection and processing software, Rigaku Oxford Diffraction: Yarnton, Oxfordshire (U. K.), 2016.Suche in Google Scholar

49. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. Olex2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/S0021889808042726.Suche in Google Scholar

50. Sheldrick, G. M. Shelxt – integrated space-group and crystal-structure determination. Acta Crystallogr. A 2015, 71, 3–8; https://doi.org/10.1107/S2053273314026370.Suche in Google Scholar PubMed PubMed Central

51. Sheldrick, G. M. Crystal structure refinement with Shelxl. Acta Crystallogr. C 2015, 71, 3–8; https://doi.org/10.1107/S2053229614024218.Suche in Google Scholar PubMed PubMed Central

52. Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Jayatilaka, D., Spackman, M. A. Crystal Explorer 2.0; University of Western Australia: Perth, Australia, 2007. Available at: http://hirshfeldsurfacenet.blogspot.com/.Suche in Google Scholar

53. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G., Taylor, R. J. J. Chem. Soc. Perkin Trans. 1987, 2, S1–S19.10.1039/p298700000s1Suche in Google Scholar

54. McKinnon, J. J., Spackman, M. A., Mitchell, A. S. Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. Acta Crystallogr. B 2004, 60, 627–668; https://doi.org/10.1107/S0108768104020300.Suche in Google Scholar PubMed

55. Liu, C. B., Li, Q., Wang, X., Che, G. B., Zhang, X. J. A series of lanthanide (III) coordination polymers derived via in situ hydrothermal decarboxylation of quinoline-2,3-dicarboxylic acid. Inorg. Chem. Commun. 2014, 39, 56–60; https://doi.org/10.1016/j.inoche.2013.10.050.Suche in Google Scholar

56. Yigit, M. V., Wang, Y., Moulton, B., MacDonald, J. C. Generation of linear coordination polymers of catena-[diaqua-(μ-pyrazine-2,6-dicarboxylato-N,O,O′-μ-N′)copper(II)] via in situ hydro (solvo)thermal decarboxylation of pyrazine-2,3,5,6-tetracarboxylic acid. Cryst. Growth Des. 2006, 6, 829–832; https://doi.org/10.1021/cg050621+.10.1021/cg050621+Suche in Google Scholar

57. Liu, C. M., Zhang, D. Q., Zhu, D. B. In situ hydrothermal decarboxylation for unprecedented three-dimensional lanthanide–organic frameworks. Inorg. Chem. Commun. 2008, 11, 903–906; https://doi.org/10.1016/j.inoche.2008.05.001.Suche in Google Scholar

58. Li, J. X., Du, Z. X., Feng, X. A new binuclear NiII complex with tetrafluorophthalate and 2,2′-bipyridine ligands: synthesis, crystal structure and magnetic properties. Z. Naturforsch. 2019, 74b, 833–838. https://doi.org/10.1515/znb-2019-0128.Suche in Google Scholar

59. Shi, Y., Song, M. M., Tao, D. L., Bo, Q. B. Two novel 2D Zn(II) coordination polymers with quinoline-3- carboxylic acid and tetraphenylphthalic acid: synthesis and photoluminescence properties. J. Chem. Crystallogr. 2020, 50, 198–205; https://doi.org/10.1007/s10870-019-00790-9.Suche in Google Scholar

60. Li, J. X., Xia, Y. Q., Cheng, L. M., Feng, X. One-pot hydrothermal synthesis of a mononuclear cobalt(II) complex and an organic-inorganic supramolecular adduct: structures, properties and Hirschfeld surface analyses. J. Solid State Chem. 2022, 313, 123271; https://doi.org/10.1016/j.jssc.2022.123271.Suche in Google Scholar

61. Kukovec, B. M., Popović, Z. Polymorphism of cobalt(II) complex with 6-bromopicolinic acid: the influence of the solution pH value on the formation of polymorphs. J. Mol. Struct. 2009, 938, 174–178; https://doi.org/10.1016/j.molstruc.2009.09.022.Suche in Google Scholar

62. Zhu, L. L., Sun, Y., Zhang, H. H., Wang, Y., Sun, B. W. Di-μ-chlorido-bis[aqua(2,2′-bipyridine- κ2N,N′)chlorido cobalt(II)]. Acta Crystallogr. 2009, E65, m991; https://doi.org/10.1107/S1600536809027846.Suche in Google Scholar PubMed PubMed Central

63. Lou, H. D., Yin, L., Zhang, B. Q., Ouyang, Z. W., Li, B., Wang, Z. X. Series of single-ion and 1D chain complexes based on quinolinic derivative: synthesis, crystal structures, HF-EPR, and magnetic properties. Inorg. Chem. 2018, 57, 7757–7762; https://doi.org/10.1021/acs.inorgchem.8b00812.Suche in Google Scholar PubMed

64. Li, J. X., Du, Z. X. Zinc and cobalt complexes with (2-carboxyphenoxy) acetic acid ligand: syntheses, structures, fluorescent and magnetic properties. J. Coord. Chem. 2016, 69, 2563–2572; https://doi.org/10.1080/00958972.2016.1216106.Suche in Google Scholar

65. Chellali, J. E., Keely, C., Bell, G., Dimanno, K. L., Tran, T., Landee, C. P., Dickie, D. A., Rademeyer, M., Turnbull, M. M., Xiao, F. Cobalt and zinc halide complexes of 4-chloro and 4-methylaniline: syntheses, structures and magnetic behavior. Polyhedron 2019, 168, 1–10; https://doi.org/10.1016/j.poly.2019.04.025.Suche in Google Scholar

66. Du, Z. X., Li, J. X. The synthesis, structure and magnetic properties of a mononuclear cobalt compound with dipyrimidine sulfane ligand derived from 2-thio-barbituric acid. Inorg. Chim. Acta 2015, 436, 159–162; https://doi.org/10.1016/j.ica.2015.07.036.Suche in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/zkri-2023-0001).


Received: 2023-01-03
Accepted: 2023-02-05
Published Online: 2023-02-20
Published in Print: 2023-03-28

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zkri-2023-0001/html?lang=de
Button zum nach oben scrollen