Microporous framework polar silicate-germanates with a wide isomorphic substitution: (K2.9Cs0.1)(Sc0.7In0.3)[(Si2.95Ge0.05)O9]·H2O and (K2.16Cs0.84)Bi[(Si1.5Ge1.5)O9]·H2O
-
Anastasiia P. Topnikova
, Elena L. Belokoneva
Abstract
New silicate-germanates (K2.9Cs0.1)(Sc0.7In0.3)[(Si2.95Ge0.05)O9]·H2O and (K2.16Cs0.84)Bi[(Si0.5Ge0.5)3O9]·H2O have been synthesized in multi-component systems under mild hydrothermal conditions. The new compounds are classified as new representatives of close related K3ScSi3O9·H2O parent structure, sp. gr. Pmn21. Their structural and isomorphic peculiarities are compared with it as well as with earlier investigated K1.46Pb1.54Сa[(Ge0.23Si0.77)3O9](ОН)0.54·0.46Н2О. Together with other known compounds, silicate-germanates form the extensive family A3M[T3O9]·H2O, A = K, Cs, Ca, Pb; M = Ho, Sc, Lu, Tb, Er, Y, Bi, Pb, In; T = Si, Ge, with a mixed microporous framework combined of M-octahedra and T-tetrahedra. Large alkali metal or/and Ca, Pb cations fill broad framework channels with cross-section up to 7.3 Å. Because of wide isomorphic substitution in the channels, and in tetrahedra and octahedra, ion exchange properties in the family are expected. Due to polar symmetry, all the crystals possess second-order nonlinearity which was confirmed with positive SHG tests for four compositions. Powder SHG experiments demonstrated moderate second harmonic intensities of order of α-quartz standard signals.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: The authors are grateful to Natalia Zubkova for her aid in the collection of the experimental X-ray diffraction data and absorption correction and to Vasiliy Yapaskurt for the determination of crystal chemical composition. We are thankful to Shilie Pan and Zhihua Yang for discussion of nonlinear optical properties in a family of compounds. Anatoly Volkov was partial supported by RFBR grant No. 20-03-00702 a.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. ICSD FIZ. Available at: http://www.fiz-karlsruhe.de.Suche in Google Scholar
2. Crystallography Open Database. Available at: http://www.crystallography.net.Suche in Google Scholar
3. Mineralogy Database. Available at: http://www.mindat.org.Suche in Google Scholar
4. Liebau, F. Structural Chemistry of Silicates; Springer-Verlag: Berlin Heidelberg, New York, Tokyo, 1985; p. 410.Suche in Google Scholar
5. Reid, A. F., Li, C., Ringwood, A. E., J. Solid State Chem. 1977, 20, 219–226; https://doi.org/10.1016/0022-4596(77)90157-8.Suche in Google Scholar
6. Foord, E. E., Birmingham, S. D., Demartin, F., Pilati, T., Gramaccioli, C. M., Lichte, F. Can. Mineral. 1993, 31, 337–346; https://doi.org/10.3749/1499-1276-31.2.337.Suche in Google Scholar
7. Hawthorne, F. C., Grundy, H. D. Acta Crystallogr. 1973, B29, 2615–2616.10.1107/S0567740873007156Suche in Google Scholar
8. Mellini, M., Merlino, S., Orlandi, P., Rinaldi, R. Am. Mineral. 1982, 67, 599–603.Suche in Google Scholar
9. Gałuskina, I. O., Gałuskin, E. V., Lazic, B., Armbruster, T., Dzierżanowski, P., Prusik, K., Wrzalik, R. Mineral. Mag. 2010, 74, 365–373; https://doi.org/10.1180/minmag.2010.074.2.365.Suche in Google Scholar
10. Ohashi, H., Li, N. J. Jap. Assoc. Mineral., Petrol. Econ. Geol. 1978, 73, 267–273; https://doi.org/10.2465/ganko1941.73.267.Suche in Google Scholar
11. Cooper, M. A., Hawthorne, F. C., Ball, N. A., Cerny, P., Kristiansen, R. Can. Mineral. 2006, 44, 943–949; https://doi.org/10.2113/gscanmin.44.4.943.Suche in Google Scholar
12. Pieczka, A., Stachowicz, M., Zelek-Pogudz, S., Gołębiowska, B., Nejbert, K., Kotowski, J., Marciniak-Maliszewska, B., Szuszkiewicz, A., Szełęg, E., Stadnicka, K. M., Woźniak, K. Eur. J. Mineral 2022, 34, 359–364.Suche in Google Scholar
13. Bergerhoff, G., Nowacki, W. Schweiz. Mineral. Petrog. Mitt. 1955, 35, 410–421.Suche in Google Scholar
14. Ferraris, G., Gula, A., Ivaldi, G., Nespolo, M., Raade, G. Z. Kristallogr. 2001, 216, 442–448; https://doi.org/10.1524/zkri.216.8.442.20353.Suche in Google Scholar
15. Orlandi, P., Pasero, M., Vezzalini, G. Am. Mineral. 1998, 83, 1330–1334; https://doi.org/10.2138/am-1998-11-1222.Suche in Google Scholar
16. Skshat, S. M., Simonov, V. I., Belov, N. V. Dokl. AN SSSR 1969, 184, 337–340.Suche in Google Scholar
17. Maksimov, B. A., Melnikov, O. K., Zhdanova, T. A., Ilyukhin, V. V., Belov, N. V. Dokl. AN SSSR 1980, 251, 98–102.Suche in Google Scholar
18. Merinov, B. V., Maksimov, B. A., Belov, N.V. Dokl. AN SSSR 1980, 255, 577–582.Suche in Google Scholar
19. Napper, J. D., Layland, R. C., Smith, M. D., zurLoye, H. C. J. Chem. Crystallogr. 2004, 34, 347–351; https://doi.org/10.1023/b:jocc.0000028666.53348.fc.10.1023/B:JOCC.0000028666.53348.fcSuche in Google Scholar
20. Pyatenko, Y. A., Zhdanova, T. A., Voronkov, A. A. Dokl. AN SSSR 1979, 248, 868–871.Suche in Google Scholar
21. Kolitsch, U., Tillmanns, E. Min. Mag. 2004, 68, 677–686; https://doi.org/10.1180/0026461046840212.Suche in Google Scholar
22. Belokoneva, E. L., Zorina, A. P., Dimitrova, O. V. Crystallogr. Rep. 2013, 58, 586–593; https://doi.org/10.1134/s1063774513040056.Suche in Google Scholar
23. Maksimov, B. A., Kharitonov, Yu. A., Gorbunov, Yu. A., Belov, N. V. Sov. Phys. Crystallogr. 1974, 19, 669–670.Suche in Google Scholar
24. Genkina, E. A., Maksimov, B. A., Timofeeva, V. A., Bykov, A. B. Zh. Strukt. Khim. 1985, 26, 157–159.10.1007/BF00747784Suche in Google Scholar
25. Gorbunov, Yu. A., Maksimov, B. A., Belov, N. V. Dokl. AN SSSR 1973, 211, 591–594.Suche in Google Scholar
26. Ilyushin, G. D., Demyanets, L. N. Russ. J. Inorg. Chem. 2008, 53, 738–751; https://doi.org/10.1134/s0036023608050124.Suche in Google Scholar
27. Pushcharovskii, D. Yu., Kudryavtseva, O. V., Ivanov, V. P., Pobedimskaya, E. A., Belov, N. V. Dokl. AN SSSR 1974, 217, 86–88.Suche in Google Scholar
28. Pushcharovskii, D. Yu., Pobedimskaya, E. A., Litvin, B. N., Belov, N. V. Dokl. AN SSSR 1974, 214, 91–94.Suche in Google Scholar
29. Redhammer, G. J., Roth, G. Acta Crystallogr. 2003, C59, i38–i40.10.1107/S0108270103006346Suche in Google Scholar
30. Patzke, G. R., Wartchow, R., Binnewies, M. Z. Kristallogr. 2000, 215, 15–16; https://doi.org/10.1515/ncrs-2000-0111.Suche in Google Scholar
31. Thompson, R. M., Downs, R. T. Am. Mineral. 2004, 89, 614–628; https://doi.org/10.2138/am-2004-0416.Suche in Google Scholar
32. Redhammer, G. J., Roth, G. Z. Kristallogr. 2004, 219, 278–294; https://doi.org/10.1524/zkri.219.5.278.32748.Suche in Google Scholar
33. Werner, J.-P., Mueller-Buschbaum, H. Z. Naturforsch. 1997, 52b, 1213–1218; https://doi.org/10.1515/znb-1997-1012.Suche in Google Scholar
34. Novak, G. A., Gibbs, G. V. Am. Mineral. 1971, 56, 791–823.Suche in Google Scholar
35. Hung, L.-I., Wang, S.-L., Szu, S.-P., Hsieh, C.-Y., Kao, H.-M., Lii, K.-H. Chem. Mater. 2004, 16, 1660–1666; https://doi.org/10.1021/cm030417e.Suche in Google Scholar
36. Hung, L.-I., Wang, S.-L., Chen, C.-Y., Chang, B.-C., Lii, K.-H. Inorg. Chem. 2005, 44, 2992–2994; https://doi.org/10.1021/ic048296n.Suche in Google Scholar PubMed
37. Heo, N.-H., Jung, S. W., Lim, W. T., Park, S. W., Seff, K. J. Phys. Chem. 2000, B104, 8372–8381.10.1021/jp0001992Suche in Google Scholar
38. Hung, L.-I., Wang, S.-L., Kao, H.-M., Lii, K.-H. Inorg. Chem. 2003, 42, 4057–4061; https://doi.org/10.1021/ic020718a.Suche in Google Scholar PubMed
39. Hung, L.-I., Wang, S.-L., Kao, H.-M., Lii, K.-H. Inorg. Chem. 2007, 46, 3301–3305; https://doi.org/10.1021/ic0700349.Suche in Google Scholar PubMed
40. Vavilin, V. I., Ilyukhin, V. V., Soldatov, E. A., Kuz’min, E. A., Gladkih, E. A., Belov, N. V. Dokl. AN SSSR 1973, 213, 837–839.Suche in Google Scholar
41. Juarez-Arellano, E. A., Bucio, L., Hernandez, J. A., Carbonio, R. E., Camarillo, E., Orozco, E. J. Solid State Chem. 2003, 170, 418–423; https://doi.org/10.1016/s0022-4596(02)00134-2.Suche in Google Scholar
42. Bucio, L., Garcia-Robledo, J., Ruvalcaba-Sil, J. L., Orozco, E. Z. Kristallogr. 2001, 216, 438–441; https://doi.org/10.1524/zkri.216.8.438.20354.Suche in Google Scholar
43. Juarez-Arellano, E. A., Bucio, L., Garcia-Robledo, J. F., Ruvalcaba, J. L., Moreno-Tovar, R., Orozco, E. Z. Kristallogr. 2002, 217, 201–204; https://doi.org/10.1524/zkri.217.5.201.20636.Suche in Google Scholar
44. Juarez-Arellano, E.-A., Rosales, I., Bucio, L., Orozco, E. Acta Crystallogr. 2002, C58, i135–i137.10.1107/S0108270102013343Suche in Google Scholar PubMed
45. Juarez-Arellano, E.-A., Rosales, I., Oliver, A., Ruvalcaba, J. L., Carbonio, R. E., Bucio, L., Orozco, E. Acta Crystallogr. 2004, C60, i14–i16.10.1107/S0108270103029056Suche in Google Scholar PubMed
46. Redhammer, G. J., Tippelt, G. Acta Crystallogr. 2004, C70, 852–857.10.1107/S2053229614017768Suche in Google Scholar PubMed
47. Köhler, J., Friedrich, H., Whangbo, M.-H., Villesuzanne, A. J. Am. Chem. Soc. 2005, 127, 12990–12996; https://doi.org/10.1021/ja053280x.Suche in Google Scholar PubMed
48. Belokoneva, E. L., Reutova, O. V., Dimitrova, O. V., Volkov, A. S. Crystallogr. Rep. 2020, 65, 566–572; https://doi.org/10.1134/s1063774520040033.Suche in Google Scholar
49. Reutova, O. V., Belokoneva, E. L., Dimitrova, O. V., Volkov, A. S. Crystallogr. Rep. 2020, 65, 711–715; https://doi.org/10.1134/s1063774520050193.,Suche in Google Scholar
50. Liu, H., Kuo, C. Z. Kristallogr. 1997, 212, 48.10.1093/jts/48.1.212Suche in Google Scholar
51. Weihl, L., Friedrich, A., Haussuehl, E., Horgenroth, W., Grzechnik, A., Friese, K., Winkler, B., Refson, K., Milman, V. J. Phys.: Condens. Matter 2010, 22.10.1088/0953-8984/22/50/505401Suche in Google Scholar PubMed
52. Zhukhlistov, A. P., Zvyagin, B. B. Sov. Phys. Crystallogr. 1977, 22, 419–423.Suche in Google Scholar
53. Ketterer, J., Kraemer, V., Jahrb, N. Mineral. Monatsh. 1986, 13, 18.Suche in Google Scholar
54. Zanardi, S., Carati, A., Cruciani, G., Bellussi, G., Millini, R., Rizzo, C. Mic. Mez. Mater. 2006, 97, 34–41; https://doi.org/10.1016/j.micromeso.2006.07.029.Suche in Google Scholar
55. Belokoneva, E. L., Morozov, I. A., Dimitrova, O. V., Volkov, A. S. Crystallogr. Rep. 2019, 64, 247–251; https://doi.org/10.1134/s1063774519020068.Suche in Google Scholar
56. Kurtz, S. K., Perry, T. T. J. Appl. Phys. 1968, 39, 3798–3812.10.1063/1.1656857Suche in Google Scholar
57. Agilent Technologies. CrysAlisPro Software System, version 1.171.37.35; Agilent Technologies UK Ltd.: Oxford, UK, 2014.Suche in Google Scholar
58. Sheldrik, G. M. Crystal structure refinement with Shelxl. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar PubMed PubMed Central
59. Farrugia, L. J. WinGX and Ortep for Windows: an update, J. Appl. Crystallogr. 2012, 45, 849–854; https://doi.org/10.1107/s0021889812029111.Suche in Google Scholar
60. Sheldrick, G. M. Shelxt – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Suche in Google Scholar PubMed PubMed Central
61. Dowty, E. Atoms 3.2 – A Computer Program for Displaying Atomic Structures; Kingpost: TN, USA, 1995.Suche in Google Scholar
62. Ponomarev, V. I., Filipenko, O. S., Atovmyan, L. O. Z. Kristallogr. 1988, 33, 98–104.Suche in Google Scholar
63. Kostova, M. H., Ananias, D., Paz, F. A. A., Ferreira, A., Rocha, J., Carlos, L. D. J. Phys. Chem. 2007, B111, 3576–3582.10.1021/jp068559uSuche in Google Scholar PubMed
64. Filipenko, O. S., Ponomarev, V. I., Dimitrova, O. V., Atovmyan, L. O. Z. Kristallogr. 1988, 33, 1122–1127.Suche in Google Scholar
65. Kostova, M. H., Ananias, D., Carlos, L. D., Rocha, J. J. Alloys Compd. 2008, 451, 624–626; https://doi.org/10.1016/j.jallcom.2007.04.077.Suche in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- In this issue
- Micro Review
- Organic-inorganic interface chemistry for sustainable materials
- Inorganic Crystal Structures (Original Paper)
- Magnesium-rich intermetallic compounds Gd5Cu5Mg13 and Tb5Cu5Mg13 – intergrowth variants with CsCl and AlB2 related slabs
- NiAs-derived cyanamide (carbodiimide) structures – a group-theoretical view
- Trimorphic TaCrP – A diffraction and 31P solid state NMR spectroscopic study
- Microporous framework polar silicate-germanates with a wide isomorphic substitution: (K2.9Cs0.1)(Sc0.7In0.3)[(Si2.95Ge0.05)O9]·H2O and (K2.16Cs0.84)Bi[(Si1.5Ge1.5)O9]·H2O
- Organic and Metalorganic Crystal Structures (Original Paper)
- A new copper(II) complex containing triclopyr: one-pot crystallization, structure, conformation and Hirshfeld surface analyses
- An asymmetric mononuclear cobalt(II) compound derived from 3-bromo-pyridine-2,6-dicarboxylic acid involving in-situ hydrothermal decarboxylation: structure, magnetic property and Hirshfeld surface analysis
Artikel in diesem Heft
- Frontmatter
- In this issue
- Micro Review
- Organic-inorganic interface chemistry for sustainable materials
- Inorganic Crystal Structures (Original Paper)
- Magnesium-rich intermetallic compounds Gd5Cu5Mg13 and Tb5Cu5Mg13 – intergrowth variants with CsCl and AlB2 related slabs
- NiAs-derived cyanamide (carbodiimide) structures – a group-theoretical view
- Trimorphic TaCrP – A diffraction and 31P solid state NMR spectroscopic study
- Microporous framework polar silicate-germanates with a wide isomorphic substitution: (K2.9Cs0.1)(Sc0.7In0.3)[(Si2.95Ge0.05)O9]·H2O and (K2.16Cs0.84)Bi[(Si1.5Ge1.5)O9]·H2O
- Organic and Metalorganic Crystal Structures (Original Paper)
- A new copper(II) complex containing triclopyr: one-pot crystallization, structure, conformation and Hirshfeld surface analyses
- An asymmetric mononuclear cobalt(II) compound derived from 3-bromo-pyridine-2,6-dicarboxylic acid involving in-situ hydrothermal decarboxylation: structure, magnetic property and Hirshfeld surface analysis