Startseite Microporous framework polar silicate-germanates with a wide isomorphic substitution: (K2.9Cs0.1)(Sc0.7In0.3)[(Si2.95Ge0.05)O9]·H2O and (K2.16Cs0.84)Bi[(Si1.5Ge1.5)O9]·H2O
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Microporous framework polar silicate-germanates with a wide isomorphic substitution: (K2.9Cs0.1)(Sc0.7In0.3)[(Si2.95Ge0.05)O9]·H2O and (K2.16Cs0.84)Bi[(Si1.5Ge1.5)O9]·H2O

  • Anastasiia P. Topnikova EMAIL logo , Elena L. Belokoneva , Anatoly S. Volkov , Olga V. Dimitrova und Sergey Yu. Stefanovich
Veröffentlicht/Copyright: 13. März 2023

Abstract

New silicate-germanates (K2.9Cs0.1)(Sc0.7In0.3)[(Si2.95Ge0.05)O9]·H2O and (K2.16Cs0.84)Bi[(Si0.5Ge0.5)3O9]·H2O have been synthesized in multi-component systems under mild hydrothermal conditions. The new compounds are classified as new representatives of close related K3ScSi3O9·H2O parent structure, sp. gr. Pmn21. Their structural and isomorphic peculiarities are compared with it as well as with earlier investigated K1.46Pb1.54Сa[(Ge0.23Si0.77)3O9](ОН)0.54·0.46Н2О. Together with other known compounds, silicate-germanates form the extensive family A3M[T3O9]·H2O, A = K, Cs, Ca, Pb; M = Ho, Sc, Lu, Tb, Er, Y, Bi, Pb, In; T = Si, Ge, with a mixed microporous framework combined of M-octahedra and T-tetrahedra. Large alkali metal or/and Ca, Pb cations fill broad framework channels with cross-section up to 7.3 Å. Because of wide isomorphic substitution in the channels, and in tetrahedra and octahedra, ion exchange properties in the family are expected. Due to polar symmetry, all the crystals possess second-order nonlinearity which was confirmed with positive SHG tests for four compositions. Powder SHG experiments demonstrated moderate second harmonic intensities of order of α-quartz standard signals.


Corresponding author: Anastasiia P. Topnikova, Crystallography, Lomonosov Moscow State University, Faculty of Geology, Leninskie Gory 1, Moscow 119991, Russian Federation, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors are grateful to Natalia Zubkova for her aid in the collection of the experimental X-ray diffraction data and absorption correction and to Vasiliy Yapaskurt for the determination of crystal chemical composition. We are thankful to Shilie Pan and Zhihua Yang for discussion of nonlinear optical properties in a family of compounds. Anatoly Volkov was partial supported by RFBR grant No. 20-03-00702 a.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. ICSD FIZ. Available at: http://www.fiz-karlsruhe.de.Suche in Google Scholar

2. Crystallography Open Database. Available at: http://www.crystallography.net.Suche in Google Scholar

3. Mineralogy Database. Available at: http://www.mindat.org.Suche in Google Scholar

4. Liebau, F. Structural Chemistry of Silicates; Springer-Verlag: Berlin Heidelberg, New York, Tokyo, 1985; p. 410.Suche in Google Scholar

5. Reid, A. F., Li, C., Ringwood, A. E., J. Solid State Chem. 1977, 20, 219–226; https://doi.org/10.1016/0022-4596(77)90157-8.Suche in Google Scholar

6. Foord, E. E., Birmingham, S. D., Demartin, F., Pilati, T., Gramaccioli, C. M., Lichte, F. Can. Mineral. 1993, 31, 337–346; https://doi.org/10.3749/1499-1276-31.2.337.Suche in Google Scholar

7. Hawthorne, F. C., Grundy, H. D. Acta Crystallogr. 1973, B29, 2615–2616.10.1107/S0567740873007156Suche in Google Scholar

8. Mellini, M., Merlino, S., Orlandi, P., Rinaldi, R. Am. Mineral. 1982, 67, 599–603.Suche in Google Scholar

9. Gałuskina, I. O., Gałuskin, E. V., Lazic, B., Armbruster, T., Dzierżanowski, P., Prusik, K., Wrzalik, R. Mineral. Mag. 2010, 74, 365–373; https://doi.org/10.1180/minmag.2010.074.2.365.Suche in Google Scholar

10. Ohashi, H., Li, N. J. Jap. Assoc. Mineral., Petrol. Econ. Geol. 1978, 73, 267–273; https://doi.org/10.2465/ganko1941.73.267.Suche in Google Scholar

11. Cooper, M. A., Hawthorne, F. C., Ball, N. A., Cerny, P., Kristiansen, R. Can. Mineral. 2006, 44, 943–949; https://doi.org/10.2113/gscanmin.44.4.943.Suche in Google Scholar

12. Pieczka, A., Stachowicz, M., Zelek-Pogudz, S., Gołębiowska, B., Nejbert, K., Kotowski, J., Marciniak-Maliszewska, B., Szuszkiewicz, A., Szełęg, E., Stadnicka, K. M., Woźniak, K. Eur. J. Mineral 2022, 34, 359–364.Suche in Google Scholar

13. Bergerhoff, G., Nowacki, W. Schweiz. Mineral. Petrog. Mitt. 1955, 35, 410–421.Suche in Google Scholar

14. Ferraris, G., Gula, A., Ivaldi, G., Nespolo, M., Raade, G. Z. Kristallogr. 2001, 216, 442–448; https://doi.org/10.1524/zkri.216.8.442.20353.Suche in Google Scholar

15. Orlandi, P., Pasero, M., Vezzalini, G. Am. Mineral. 1998, 83, 1330–1334; https://doi.org/10.2138/am-1998-11-1222.Suche in Google Scholar

16. Skshat, S. M., Simonov, V. I., Belov, N. V. Dokl. AN SSSR 1969, 184, 337–340.Suche in Google Scholar

17. Maksimov, B. A., Melnikov, O. K., Zhdanova, T. A., Ilyukhin, V. V., Belov, N. V. Dokl. AN SSSR 1980, 251, 98–102.Suche in Google Scholar

18. Merinov, B. V., Maksimov, B. A., Belov, N.V. Dokl. AN SSSR 1980, 255, 577–582.Suche in Google Scholar

19. Napper, J. D., Layland, R. C., Smith, M. D., zurLoye, H. C. J. Chem. Crystallogr. 2004, 34, 347–351; https://doi.org/10.1023/b:jocc.0000028666.53348.fc.10.1023/B:JOCC.0000028666.53348.fcSuche in Google Scholar

20. Pyatenko, Y. A., Zhdanova, T. A., Voronkov, A. A. Dokl. AN SSSR 1979, 248, 868–871.Suche in Google Scholar

21. Kolitsch, U., Tillmanns, E. Min. Mag. 2004, 68, 677–686; https://doi.org/10.1180/0026461046840212.Suche in Google Scholar

22. Belokoneva, E. L., Zorina, A. P., Dimitrova, O. V. Crystallogr. Rep. 2013, 58, 586–593; https://doi.org/10.1134/s1063774513040056.Suche in Google Scholar

23. Maksimov, B. A., Kharitonov, Yu. A., Gorbunov, Yu. A., Belov, N. V. Sov. Phys. Crystallogr. 1974, 19, 669–670.Suche in Google Scholar

24. Genkina, E. A., Maksimov, B. A., Timofeeva, V. A., Bykov, A. B. Zh. Strukt. Khim. 1985, 26, 157–159.10.1007/BF00747784Suche in Google Scholar

25. Gorbunov, Yu. A., Maksimov, B. A., Belov, N. V. Dokl. AN SSSR 1973, 211, 591–594.Suche in Google Scholar

26. Ilyushin, G. D., Demyanets, L. N. Russ. J. Inorg. Chem. 2008, 53, 738–751; https://doi.org/10.1134/s0036023608050124.Suche in Google Scholar

27. Pushcharovskii, D. Yu., Kudryavtseva, O. V., Ivanov, V. P., Pobedimskaya, E. A., Belov, N. V. Dokl. AN SSSR 1974, 217, 86–88.Suche in Google Scholar

28. Pushcharovskii, D. Yu., Pobedimskaya, E. A., Litvin, B. N., Belov, N. V. Dokl. AN SSSR 1974, 214, 91–94.Suche in Google Scholar

29. Redhammer, G. J., Roth, G. Acta Crystallogr. 2003, C59, i38–i40.10.1107/S0108270103006346Suche in Google Scholar

30. Patzke, G. R., Wartchow, R., Binnewies, M. Z. Kristallogr. 2000, 215, 15–16; https://doi.org/10.1515/ncrs-2000-0111.Suche in Google Scholar

31. Thompson, R. M., Downs, R. T. Am. Mineral. 2004, 89, 614–628; https://doi.org/10.2138/am-2004-0416.Suche in Google Scholar

32. Redhammer, G. J., Roth, G. Z. Kristallogr. 2004, 219, 278–294; https://doi.org/10.1524/zkri.219.5.278.32748.Suche in Google Scholar

33. Werner, J.-P., Mueller-Buschbaum, H. Z. Naturforsch. 1997, 52b, 1213–1218; https://doi.org/10.1515/znb-1997-1012.Suche in Google Scholar

34. Novak, G. A., Gibbs, G. V. Am. Mineral. 1971, 56, 791–823.Suche in Google Scholar

35. Hung, L.-I., Wang, S.-L., Szu, S.-P., Hsieh, C.-Y., Kao, H.-M., Lii, K.-H. Chem. Mater. 2004, 16, 1660–1666; https://doi.org/10.1021/cm030417e.Suche in Google Scholar

36. Hung, L.-I., Wang, S.-L., Chen, C.-Y., Chang, B.-C., Lii, K.-H. Inorg. Chem. 2005, 44, 2992–2994; https://doi.org/10.1021/ic048296n.Suche in Google Scholar PubMed

37. Heo, N.-H., Jung, S. W., Lim, W. T., Park, S. W., Seff, K. J. Phys. Chem. 2000, B104, 8372–8381.10.1021/jp0001992Suche in Google Scholar

38. Hung, L.-I., Wang, S.-L., Kao, H.-M., Lii, K.-H. Inorg. Chem. 2003, 42, 4057–4061; https://doi.org/10.1021/ic020718a.Suche in Google Scholar PubMed

39. Hung, L.-I., Wang, S.-L., Kao, H.-M., Lii, K.-H. Inorg. Chem. 2007, 46, 3301–3305; https://doi.org/10.1021/ic0700349.Suche in Google Scholar PubMed

40. Vavilin, V. I., Ilyukhin, V. V., Soldatov, E. A., Kuz’min, E. A., Gladkih, E. A., Belov, N. V. Dokl. AN SSSR 1973, 213, 837–839.Suche in Google Scholar

41. Juarez-Arellano, E. A., Bucio, L., Hernandez, J. A., Carbonio, R. E., Camarillo, E., Orozco, E. J. Solid State Chem. 2003, 170, 418–423; https://doi.org/10.1016/s0022-4596(02)00134-2.Suche in Google Scholar

42. Bucio, L., Garcia-Robledo, J., Ruvalcaba-Sil, J. L., Orozco, E. Z. Kristallogr. 2001, 216, 438–441; https://doi.org/10.1524/zkri.216.8.438.20354.Suche in Google Scholar

43. Juarez-Arellano, E. A., Bucio, L., Garcia-Robledo, J. F., Ruvalcaba, J. L., Moreno-Tovar, R., Orozco, E. Z. Kristallogr. 2002, 217, 201–204; https://doi.org/10.1524/zkri.217.5.201.20636.Suche in Google Scholar

44. Juarez-Arellano, E.-A., Rosales, I., Bucio, L., Orozco, E. Acta Crystallogr. 2002, C58, i135–i137.10.1107/S0108270102013343Suche in Google Scholar PubMed

45. Juarez-Arellano, E.-A., Rosales, I., Oliver, A., Ruvalcaba, J. L., Carbonio, R. E., Bucio, L., Orozco, E. Acta Crystallogr. 2004, C60, i14–i16.10.1107/S0108270103029056Suche in Google Scholar PubMed

46. Redhammer, G. J., Tippelt, G. Acta Crystallogr. 2004, C70, 852–857.10.1107/S2053229614017768Suche in Google Scholar PubMed

47. Köhler, J., Friedrich, H., Whangbo, M.-H., Villesuzanne, A. J. Am. Chem. Soc. 2005, 127, 12990–12996; https://doi.org/10.1021/ja053280x.Suche in Google Scholar PubMed

48. Belokoneva, E. L., Reutova, O. V., Dimitrova, O. V., Volkov, A. S. Crystallogr. Rep. 2020, 65, 566–572; https://doi.org/10.1134/s1063774520040033.Suche in Google Scholar

49. Reutova, O. V., Belokoneva, E. L., Dimitrova, O. V., Volkov, A. S. Crystallogr. Rep. 2020, 65, 711–715; https://doi.org/10.1134/s1063774520050193.,Suche in Google Scholar

50. Liu, H., Kuo, C. Z. Kristallogr. 1997, 212, 48.10.1093/jts/48.1.212Suche in Google Scholar

51. Weihl, L., Friedrich, A., Haussuehl, E., Horgenroth, W., Grzechnik, A., Friese, K., Winkler, B., Refson, K., Milman, V. J. Phys.: Condens. Matter 2010, 22.10.1088/0953-8984/22/50/505401Suche in Google Scholar PubMed

52. Zhukhlistov, A. P., Zvyagin, B. B. Sov. Phys. Crystallogr. 1977, 22, 419–423.Suche in Google Scholar

53. Ketterer, J., Kraemer, V., Jahrb, N. Mineral. Monatsh. 1986, 13, 18.Suche in Google Scholar

54. Zanardi, S., Carati, A., Cruciani, G., Bellussi, G., Millini, R., Rizzo, C. Mic. Mez. Mater. 2006, 97, 34–41; https://doi.org/10.1016/j.micromeso.2006.07.029.Suche in Google Scholar

55. Belokoneva, E. L., Morozov, I. A., Dimitrova, O. V., Volkov, A. S. Crystallogr. Rep. 2019, 64, 247–251; https://doi.org/10.1134/s1063774519020068.Suche in Google Scholar

56. Kurtz, S. K., Perry, T. T. J. Appl. Phys. 1968, 39, 3798–3812.10.1063/1.1656857Suche in Google Scholar

57. Agilent Technologies. CrysAlisPro Software System, version 1.171.37.35; Agilent Technologies UK Ltd.: Oxford, UK, 2014.Suche in Google Scholar

58. Sheldrik, G. M. Crystal structure refinement with Shelxl. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar PubMed PubMed Central

59. Farrugia, L. J. WinGX and Ortep for Windows: an update, J. Appl. Crystallogr. 2012, 45, 849–854; https://doi.org/10.1107/s0021889812029111.Suche in Google Scholar

60. Sheldrick, G. M. Shelxt – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Suche in Google Scholar PubMed PubMed Central

61. Dowty, E. Atoms 3.2 – A Computer Program for Displaying Atomic Structures; Kingpost: TN, USA, 1995.Suche in Google Scholar

62. Ponomarev, V. I., Filipenko, O. S., Atovmyan, L. O. Z. Kristallogr. 1988, 33, 98–104.Suche in Google Scholar

63. Kostova, M. H., Ananias, D., Paz, F. A. A., Ferreira, A., Rocha, J., Carlos, L. D. J. Phys. Chem. 2007, B111, 3576–3582.10.1021/jp068559uSuche in Google Scholar PubMed

64. Filipenko, O. S., Ponomarev, V. I., Dimitrova, O. V., Atovmyan, L. O. Z. Kristallogr. 1988, 33, 1122–1127.Suche in Google Scholar

65. Kostova, M. H., Ananias, D., Carlos, L. D., Rocha, J. J. Alloys Compd. 2008, 451, 624–626; https://doi.org/10.1016/j.jallcom.2007.04.077.Suche in Google Scholar

Received: 2022-08-26
Accepted: 2023-02-20
Published Online: 2023-03-13
Published in Print: 2023-03-28

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 24.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zkri-2022-0056/html
Button zum nach oben scrollen