Abstract
The magnesium-rich intermetallic compounds Gd5Cu5Mg13 and Tb5Cu5Mg13 were obtained from direct reactions of the elements (induction melting) in sealed tantalum ampoules. Both compounds crystallize with the orthorhombic Y5Cu5Mg13 type structure, space group Cmcm and Z = 4. The polycrystalline samples were characterized by powder X-ray diffraction. The structure of the gadolinium compound was refined from single crystal X-ray diffraction data: a = 414.78(2), b = 1921.87(12), c = 2573.89(16) pm, wR2 = 0.0492, 1611 F2 values and 77 variables. Refinement of the occupancy parameters revealed a small degree of Gd/Mg mixing for the Gd3 site, leading to the composition Gd4.93(1)Cu5Mg13.07(1) for the studied crystal. The Gd5Cu5Mg13 structure contains slabs of equiatomic GdCuMg, which are embedded in a magnesium matrix. From a geometrical point of view, one can describe the Gd5Cu5Mg13 and Tb5Cu5Mg13 structures as intergrowth variants of distorted W/CsCl and AlB2 related slabs. The most remarkable crystal chemical feature concerns the bcc like magnesium slabs with short Mg–Mg distances ranging from 300 to 342 pm. Temperature dependent magnetic susceptibility measurements show Curie-Weiss paramagnetism for Tb5Cu5Mg13 (10.5(1) μ B Tb atom−1 and Θ P = −11.6(1) K). Antiferromagnetic ordering was detected below the Néel temperatures of T N = 30.5(3) K.
Acknowledgments
We thank Dipl.-Ing. J. Kösters for the intensity data collections and M. Sc. C. Paulsen for the EDX analyses.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Rodewald, U. C., Chevalier, B., Pöttgen, R. J. Solid State Chem. 2007, 180, 1720–1736; https://doi.org/10.1016/j.jssc.2007.03.007.Suche in Google Scholar
2. Villars, P., Cenzual, K. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2022/23); ASM International®: Materials Park, Ohio (USA), 2022.Suche in Google Scholar
3. Kersting, M., Niehaus, O., Hoffmann, R.-D., Rodewald, U. C., Pöttgen, R. Z. Kristallogr. 2014, 229, 285–294; https://doi.org/10.1515/zkri-2013-1717.Suche in Google Scholar
4. Ourane, B., Gaudin, E., Zouari, R., Couillaud, S., Bobet, J.-L. Inorg. Chem. 2013, 52, 13289–13291; https://doi.org/10.1021/ic401911g.Suche in Google Scholar PubMed
5. Solokha, P., De Negri, S., Pavlyuk, V., Saccone, A. Solid State Sci. 2009, 11, 801–811; https://doi.org/10.1016/j.solidstatesciences.2008.12.006.Suche in Google Scholar
6. Linsinger, S., Eul, M., Rodewald, U. C., Pöttgen, R. Z. Naturforsch. 2010, 65b, 1185–1190; https://doi.org/10.1515/znb-2010-1002.Suche in Google Scholar
7. Linsinger, S., Hoffmann, R.-D., Eul, M., Pöttgen, R. Z. Naturforsch. 2012, 67b, 219–225; https://doi.org/10.1515/znb-2012-0307.Suche in Google Scholar
8. Li, Q., Luo, Q., Gu, Q.-F. J. Mater. Chem. 2017, 5, 3848–3864; https://doi.org/10.1039/c6ta10090b.Suche in Google Scholar
9. Al Asmar, E., Tencé, S., Bobet, J.-L., Ourane, B., Nakhl, M., Zakhour, M., Gaudin, E. Inorg. Chem. 2018, 57, 14152–14158; https://doi.org/10.1021/acs.inorgchem.8b02007.Suche in Google Scholar PubMed
10. Egami, M., Abe, E. Scripta Mater. 2015, 98, 64–67; https://doi.org/10.1016/j.scriptamat.2014.11.013.Suche in Google Scholar
11. Kishida, K., Nagai, K., Matsumoto, A., Yasuhara, A., Inui, H. Acta Mater. 2015, 99, 228–239; https://doi.org/10.1016/j.actamat.2015.08.004.Suche in Google Scholar
12. Donohue, J. The Structures of the Elements; Wiley: New York, 1974.Suche in Google Scholar
13. Parthé, E., Chabot, B. A., Cenzual, K. Chimia 1985, 39, 164–174.Suche in Google Scholar
14. Parthé, E., Gelato, L., Chabot, B., Penzo, M., Cenzual, K., Gladyshevskii, R. TYPIX–Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types, Gmelin Handbook of Inorganic and Organometallic Chemistry, 8th ed.; Springer: Berlin, 1993.10.1007/978-3-662-02909-1Suche in Google Scholar
15. Lukachuk, M., Pöttgen, R. Z. Kristallogr. 2003, 218, 767–787; https://doi.org/10.1524/zkri.218.12.767.20545.Suche in Google Scholar
16. Solokha, P., De Negri, S., Pavlyuk, V., Saccone, A. Intermetallics 2010, 18, 719–724; https://doi.org/10.1016/j.intermet.2009.11.012.Suche in Google Scholar
17. Shtender, V. V., Pavlyuk, V. V., Dmytriv, G. S., Nitek, W., Lasocha, W., Cichowicz, G., Cyrański, M. K., Paul-Boncour, V., Zavaliy, I. Y. Z. Kristallogr. 2019, 234, 19–32; https://doi.org/10.1515/zkri-2018-2107.Suche in Google Scholar
18. Solokha, P., De Negri, S., Saccone, A., Pavlyuk, V., Marciniak, B., Tedenac, J.-C. Acta Crystallogr. C 2007, 63, i13–i16; https://doi.org/10.1107/s0108270107001503.Suche in Google Scholar
19. Linsinger, S., Eul, M., Ben Yahia, H., Möller, M. H., Pöttgen, R. Z. Naturforsch. 2010, 65b, 1305–1310; https://doi.org/10.1515/znb-2010-1103.Suche in Google Scholar
20. Solokha, P., De Negri, S., Pavlyuk, V., Saccone, A., Marciniak, B. J. Solid State Chem. 2007, 180, 3066–3075; https://doi.org/10.1016/j.jssc.2007.09.003.Suche in Google Scholar
21. De Negri, S., Solokha, P., Saccone, A., Pavlyuk, V. Intermetallics 2009, 17, 614–621; https://doi.org/10.1016/j.intermet.2009.02.001.Suche in Google Scholar
22. Reimann, M. K., Kremer, R. K., Kösters, J., Pöttgen, R. Z. Naturforsch. 2023, 78b, submitted for publication.Suche in Google Scholar
23. Tuncel, S., Hoffmann, R.-D., Heying, B., Chevalier, B., Pöttgen, R. Z. Anorg. Allg. Chem. 2006, 632, 2017–2020; https://doi.org/10.1002/zaac.200600113.Suche in Google Scholar
24. Gorsse, S., Chevalier, B., Tuncel, S., Pöttgen, R. J. Solid State Chem. 2009, 182, 948–953; https://doi.org/10.1016/j.jssc.2009.01.027.Suche in Google Scholar
25. Pöttgen, R., Gulden, T., Simon, A. GIT Labor-Fachz. 1999, 43, 133–136.Suche in Google Scholar
26. Pöttgen, R., Lang, A., Hoffmann, R.-D., Künnen, B., Kotzyba, G., Müllmann, R., Mosel, B. D., Rosenhahn, C. Z. Kristallogr. 1999, 214, 143–150.10.1524/zkri.1999.214.3.143Suche in Google Scholar
27. Yvon, K., Jeitschko, W., Parthé, E. J. Appl. Crystallogr. 1977, 10, 73–74; https://doi.org/10.1107/s0021889877012898.Suche in Google Scholar
28. Palatinus, L. Acta Crystallogr. 2013, B69, 1–16; https://doi.org/10.1107/s0108768112051361.Suche in Google Scholar
29. Palatinus, L., Chapuis, G. J. Appl. Crystallogr. 2007, 40, 786–790; https://doi.org/10.1107/s0021889807029238.Suche in Google Scholar
30. Petříček, V., Dušek, M., Palatinus, L. Z. Kristallogr. 2014, 229, 345–352.10.1515/zkri-2014-1737Suche in Google Scholar
31. OriginLab Corp. Originpro 2016G (Version 9.3.2.303), 2016.Suche in Google Scholar
32. Corel Corporation. CorelDRAW Graphics Suite 2017 (Version 19.0.0.328), 2017.Suche in Google Scholar
33. Tappe, F., Pöttgen, R. Rev. Inorg. Chem. 2011, 31, 5–25.10.1515/revic.2011.007Suche in Google Scholar
34. Mishra, R., Hoffmann, R.-D., Pöttgen, R. Z. Naturforsch. 2001, 56b, 239–244; https://doi.org/10.1515/znb-2001-0304.Suche in Google Scholar
35. Stein, S., Heletta, L., Pöttgen, R. Z. Naturforsch. 2017, 72b, 511–515; https://doi.org/10.1515/znb-2017-0070.Suche in Google Scholar
36. Solokha, P. G., Pavlyuk, V. V., Saccone, A., De Negri, S., Prochwicz, W., Marciniak, B., Różycka-Sokołowska, E. J. Solid State Chem. 2006, 179, 3073–3081; https://doi.org/10.1016/j.jssc.2006.05.040.Suche in Google Scholar
37. Stein, S., Heletta, L., Block, T., Pöttgen, R. Z. Naturforsch. 2018, 73b, 987–997; https://doi.org/10.1515/znb-2018-0191.Suche in Google Scholar
38. Kong, T., Meier, W. R., Lin, Q., Saunders, S. M., Bud’ko, S. L., Flint, R., Canfield, P. C. Phys. Rev. B 2016, 94, 144434.Suche in Google Scholar
39. Krypyakevich, P. I., Markiv, V. Y., Melnyk, E. V. Dopov. Akad. Nauk. Ukr. RSR, Ser. A 1967, 750–753.Suche in Google Scholar
40. Dwight, A. E., Mueller, M. H., Conner, R. A.Jr., Downey, J. W., Knott, H. Trans. Metall. Soc. AIME 1968, 242, 2075–2080.Suche in Google Scholar
41. Zumdick, M. F., Hoffmann, R.-D., Pöttgen, R. Z. Naturforsch. 1999, 54b, 45–53; https://doi.org/10.1515/znb-1999-0111.Suche in Google Scholar
42. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Suche in Google Scholar
43. Tuncel, S., Hoffmann, R.-D., Chevalier, B., Matar, S. F., Pöttgen, R. Z. Anorg. Allg. Chem. 2007, 633, 151–157; https://doi.org/10.1002/zaac.200600263.Suche in Google Scholar
44. Pöttgen, R., Hoffmann, R.-D., Renger, J., Rodewald, U. C., Möller, M. H. Z. Anorg. Allg. Chem. 2000, 626, 2257–2263.10.1002/1521-3749(200011)626:11<2257::AID-ZAAC2257>3.0.CO;2-#Suche in Google Scholar
45. Linsinger, S., Pöttgen, R. Z. Naturforsch. 2011, 66b, 565–569; https://doi.org/10.1515/znb-2011-0603.Suche in Google Scholar
46. Kersting, M., Johnscher, M., Pöttgen, R. Z. Kristallogr. 2013, 228, 635–642; https://doi.org/10.1524/zkri.2013.1690.Suche in Google Scholar
47. Lueken, H. Magnetochemie; Teubner: Stuttgart, 1999.10.1007/978-3-322-80118-0Suche in Google Scholar
48. Szytuła, A., Leciejewicz, J. Handbook of Crystal Structures and Magnetic Properties of Rare Earth Intermetallics; CRC Press: Boca Raton, 1994.Suche in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- In this issue
- Micro Review
- Organic-inorganic interface chemistry for sustainable materials
- Inorganic Crystal Structures (Original Paper)
- Magnesium-rich intermetallic compounds Gd5Cu5Mg13 and Tb5Cu5Mg13 – intergrowth variants with CsCl and AlB2 related slabs
- NiAs-derived cyanamide (carbodiimide) structures – a group-theoretical view
- Trimorphic TaCrP – A diffraction and 31P solid state NMR spectroscopic study
- Microporous framework polar silicate-germanates with a wide isomorphic substitution: (K2.9Cs0.1)(Sc0.7In0.3)[(Si2.95Ge0.05)O9]·H2O and (K2.16Cs0.84)Bi[(Si1.5Ge1.5)O9]·H2O
- Organic and Metalorganic Crystal Structures (Original Paper)
- A new copper(II) complex containing triclopyr: one-pot crystallization, structure, conformation and Hirshfeld surface analyses
- An asymmetric mononuclear cobalt(II) compound derived from 3-bromo-pyridine-2,6-dicarboxylic acid involving in-situ hydrothermal decarboxylation: structure, magnetic property and Hirshfeld surface analysis
Artikel in diesem Heft
- Frontmatter
- In this issue
- Micro Review
- Organic-inorganic interface chemistry for sustainable materials
- Inorganic Crystal Structures (Original Paper)
- Magnesium-rich intermetallic compounds Gd5Cu5Mg13 and Tb5Cu5Mg13 – intergrowth variants with CsCl and AlB2 related slabs
- NiAs-derived cyanamide (carbodiimide) structures – a group-theoretical view
- Trimorphic TaCrP – A diffraction and 31P solid state NMR spectroscopic study
- Microporous framework polar silicate-germanates with a wide isomorphic substitution: (K2.9Cs0.1)(Sc0.7In0.3)[(Si2.95Ge0.05)O9]·H2O and (K2.16Cs0.84)Bi[(Si1.5Ge1.5)O9]·H2O
- Organic and Metalorganic Crystal Structures (Original Paper)
- A new copper(II) complex containing triclopyr: one-pot crystallization, structure, conformation and Hirshfeld surface analyses
- An asymmetric mononuclear cobalt(II) compound derived from 3-bromo-pyridine-2,6-dicarboxylic acid involving in-situ hydrothermal decarboxylation: structure, magnetic property and Hirshfeld surface analysis