Startseite Magnesium-rich intermetallic compounds Gd5Cu5Mg13 and Tb5Cu5Mg13 – intergrowth variants with CsCl and AlB2 related slabs
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Magnesium-rich intermetallic compounds Gd5Cu5Mg13 and Tb5Cu5Mg13 – intergrowth variants with CsCl and AlB2 related slabs

  • Maximilian Kai Reimann und Rainer Pöttgen EMAIL logo
Veröffentlicht/Copyright: 13. Januar 2023

Abstract

The magnesium-rich intermetallic compounds Gd5Cu5Mg13 and Tb5Cu5Mg13 were obtained from direct reactions of the elements (induction melting) in sealed tantalum ampoules. Both compounds crystallize with the orthorhombic Y5Cu5Mg13 type structure, space group Cmcm and Z = 4. The polycrystalline samples were characterized by powder X-ray diffraction. The structure of the gadolinium compound was refined from single crystal X-ray diffraction data: a = 414.78(2), b = 1921.87(12), c = 2573.89(16) pm, wR2 = 0.0492, 1611 F2 values and 77 variables. Refinement of the occupancy parameters revealed a small degree of Gd/Mg mixing for the Gd3 site, leading to the composition Gd4.93(1)Cu5Mg13.07(1) for the studied crystal. The Gd5Cu5Mg13 structure contains slabs of equiatomic GdCuMg, which are embedded in a magnesium matrix. From a geometrical point of view, one can describe the Gd5Cu5Mg13 and Tb5Cu5Mg13 structures as intergrowth variants of distorted W/CsCl and AlB2 related slabs. The most remarkable crystal chemical feature concerns the bcc like magnesium slabs with short Mg–Mg distances ranging from 300 to 342 pm. Temperature dependent magnetic susceptibility measurements show Curie-Weiss paramagnetism for Tb5Cu5Mg13 (10.5(1) μ B Tb atom−1 and Θ P = −11.6(1) K). Antiferromagnetic ordering was detected below the Néel temperatures of T N = 30.5(3) K.


Corresponding author: Rainer Pöttgen, Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany, E-mail:

Acknowledgments

We thank Dipl.-Ing. J. Kösters for the intensity data collections and M. Sc. C. Paulsen for the EDX analyses.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Rodewald, U. C., Chevalier, B., Pöttgen, R. J. Solid State Chem. 2007, 180, 1720–1736; https://doi.org/10.1016/j.jssc.2007.03.007.Suche in Google Scholar

2. Villars, P., Cenzual, K. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2022/23); ASM International®: Materials Park, Ohio (USA), 2022.Suche in Google Scholar

3. Kersting, M., Niehaus, O., Hoffmann, R.-D., Rodewald, U. C., Pöttgen, R. Z. Kristallogr. 2014, 229, 285–294; https://doi.org/10.1515/zkri-2013-1717.Suche in Google Scholar

4. Ourane, B., Gaudin, E., Zouari, R., Couillaud, S., Bobet, J.-L. Inorg. Chem. 2013, 52, 13289–13291; https://doi.org/10.1021/ic401911g.Suche in Google Scholar PubMed

5. Solokha, P., De Negri, S., Pavlyuk, V., Saccone, A. Solid State Sci. 2009, 11, 801–811; https://doi.org/10.1016/j.solidstatesciences.2008.12.006.Suche in Google Scholar

6. Linsinger, S., Eul, M., Rodewald, U. C., Pöttgen, R. Z. Naturforsch. 2010, 65b, 1185–1190; https://doi.org/10.1515/znb-2010-1002.Suche in Google Scholar

7. Linsinger, S., Hoffmann, R.-D., Eul, M., Pöttgen, R. Z. Naturforsch. 2012, 67b, 219–225; https://doi.org/10.1515/znb-2012-0307.Suche in Google Scholar

8. Li, Q., Luo, Q., Gu, Q.-F. J. Mater. Chem. 2017, 5, 3848–3864; https://doi.org/10.1039/c6ta10090b.Suche in Google Scholar

9. Al Asmar, E., Tencé, S., Bobet, J.-L., Ourane, B., Nakhl, M., Zakhour, M., Gaudin, E. Inorg. Chem. 2018, 57, 14152–14158; https://doi.org/10.1021/acs.inorgchem.8b02007.Suche in Google Scholar PubMed

10. Egami, M., Abe, E. Scripta Mater. 2015, 98, 64–67; https://doi.org/10.1016/j.scriptamat.2014.11.013.Suche in Google Scholar

11. Kishida, K., Nagai, K., Matsumoto, A., Yasuhara, A., Inui, H. Acta Mater. 2015, 99, 228–239; https://doi.org/10.1016/j.actamat.2015.08.004.Suche in Google Scholar

12. Donohue, J. The Structures of the Elements; Wiley: New York, 1974.Suche in Google Scholar

13. Parthé, E., Chabot, B. A., Cenzual, K. Chimia 1985, 39, 164–174.Suche in Google Scholar

14. Parthé, E., Gelato, L., Chabot, B., Penzo, M., Cenzual, K., Gladyshevskii, R. TYPIX–Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types, Gmelin Handbook of Inorganic and Organometallic Chemistry, 8th ed.; Springer: Berlin, 1993.10.1007/978-3-662-02909-1Suche in Google Scholar

15. Lukachuk, M., Pöttgen, R. Z. Kristallogr. 2003, 218, 767–787; https://doi.org/10.1524/zkri.218.12.767.20545.Suche in Google Scholar

16. Solokha, P., De Negri, S., Pavlyuk, V., Saccone, A. Intermetallics 2010, 18, 719–724; https://doi.org/10.1016/j.intermet.2009.11.012.Suche in Google Scholar

17. Shtender, V. V., Pavlyuk, V. V., Dmytriv, G. S., Nitek, W., Lasocha, W., Cichowicz, G., Cyrański, M. K., Paul-Boncour, V., Zavaliy, I. Y. Z. Kristallogr. 2019, 234, 19–32; https://doi.org/10.1515/zkri-2018-2107.Suche in Google Scholar

18. Solokha, P., De Negri, S., Saccone, A., Pavlyuk, V., Marciniak, B., Tedenac, J.-C. Acta Crystallogr. C 2007, 63, i13–i16; https://doi.org/10.1107/s0108270107001503.Suche in Google Scholar

19. Linsinger, S., Eul, M., Ben Yahia, H., Möller, M. H., Pöttgen, R. Z. Naturforsch. 2010, 65b, 1305–1310; https://doi.org/10.1515/znb-2010-1103.Suche in Google Scholar

20. Solokha, P., De Negri, S., Pavlyuk, V., Saccone, A., Marciniak, B. J. Solid State Chem. 2007, 180, 3066–3075; https://doi.org/10.1016/j.jssc.2007.09.003.Suche in Google Scholar

21. De Negri, S., Solokha, P., Saccone, A., Pavlyuk, V. Intermetallics 2009, 17, 614–621; https://doi.org/10.1016/j.intermet.2009.02.001.Suche in Google Scholar

22. Reimann, M. K., Kremer, R. K., Kösters, J., Pöttgen, R. Z. Naturforsch. 2023, 78b, submitted for publication.Suche in Google Scholar

23. Tuncel, S., Hoffmann, R.-D., Heying, B., Chevalier, B., Pöttgen, R. Z. Anorg. Allg. Chem. 2006, 632, 2017–2020; https://doi.org/10.1002/zaac.200600113.Suche in Google Scholar

24. Gorsse, S., Chevalier, B., Tuncel, S., Pöttgen, R. J. Solid State Chem. 2009, 182, 948–953; https://doi.org/10.1016/j.jssc.2009.01.027.Suche in Google Scholar

25. Pöttgen, R., Gulden, T., Simon, A. GIT Labor-Fachz. 1999, 43, 133–136.Suche in Google Scholar

26. Pöttgen, R., Lang, A., Hoffmann, R.-D., Künnen, B., Kotzyba, G., Müllmann, R., Mosel, B. D., Rosenhahn, C. Z. Kristallogr. 1999, 214, 143–150.10.1524/zkri.1999.214.3.143Suche in Google Scholar

27. Yvon, K., Jeitschko, W., Parthé, E. J. Appl. Crystallogr. 1977, 10, 73–74; https://doi.org/10.1107/s0021889877012898.Suche in Google Scholar

28. Palatinus, L. Acta Crystallogr. 2013, B69, 1–16; https://doi.org/10.1107/s0108768112051361.Suche in Google Scholar

29. Palatinus, L., Chapuis, G. J. Appl. Crystallogr. 2007, 40, 786–790; https://doi.org/10.1107/s0021889807029238.Suche in Google Scholar

30. Petříček, V., Dušek, M., Palatinus, L. Z. Kristallogr. 2014, 229, 345–352.10.1515/zkri-2014-1737Suche in Google Scholar

31. OriginLab Corp. Originpro 2016G (Version 9.3.2.303), 2016.Suche in Google Scholar

32. Corel Corporation. CorelDRAW Graphics Suite 2017 (Version 19.0.0.328), 2017.Suche in Google Scholar

33. Tappe, F., Pöttgen, R. Rev. Inorg. Chem. 2011, 31, 5–25.10.1515/revic.2011.007Suche in Google Scholar

34. Mishra, R., Hoffmann, R.-D., Pöttgen, R. Z. Naturforsch. 2001, 56b, 239–244; https://doi.org/10.1515/znb-2001-0304.Suche in Google Scholar

35. Stein, S., Heletta, L., Pöttgen, R. Z. Naturforsch. 2017, 72b, 511–515; https://doi.org/10.1515/znb-2017-0070.Suche in Google Scholar

36. Solokha, P. G., Pavlyuk, V. V., Saccone, A., De Negri, S., Prochwicz, W., Marciniak, B., Różycka-Sokołowska, E. J. Solid State Chem. 2006, 179, 3073–3081; https://doi.org/10.1016/j.jssc.2006.05.040.Suche in Google Scholar

37. Stein, S., Heletta, L., Block, T., Pöttgen, R. Z. Naturforsch. 2018, 73b, 987–997; https://doi.org/10.1515/znb-2018-0191.Suche in Google Scholar

38. Kong, T., Meier, W. R., Lin, Q., Saunders, S. M., Bud’ko, S. L., Flint, R., Canfield, P. C. Phys. Rev. B 2016, 94, 144434.Suche in Google Scholar

39. Krypyakevich, P. I., Markiv, V. Y., Melnyk, E. V. Dopov. Akad. Nauk. Ukr. RSR, Ser. A 1967, 750–753.Suche in Google Scholar

40. Dwight, A. E., Mueller, M. H., Conner, R. A.Jr., Downey, J. W., Knott, H. Trans. Metall. Soc. AIME 1968, 242, 2075–2080.Suche in Google Scholar

41. Zumdick, M. F., Hoffmann, R.-D., Pöttgen, R. Z. Naturforsch. 1999, 54b, 45–53; https://doi.org/10.1515/znb-1999-0111.Suche in Google Scholar

42. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Suche in Google Scholar

43. Tuncel, S., Hoffmann, R.-D., Chevalier, B., Matar, S. F., Pöttgen, R. Z. Anorg. Allg. Chem. 2007, 633, 151–157; https://doi.org/10.1002/zaac.200600263.Suche in Google Scholar

44. Pöttgen, R., Hoffmann, R.-D., Renger, J., Rodewald, U. C., Möller, M. H. Z. Anorg. Allg. Chem. 2000, 626, 2257–2263.10.1002/1521-3749(200011)626:11<2257::AID-ZAAC2257>3.0.CO;2-#Suche in Google Scholar

45. Linsinger, S., Pöttgen, R. Z. Naturforsch. 2011, 66b, 565–569; https://doi.org/10.1515/znb-2011-0603.Suche in Google Scholar

46. Kersting, M., Johnscher, M., Pöttgen, R. Z. Kristallogr. 2013, 228, 635–642; https://doi.org/10.1524/zkri.2013.1690.Suche in Google Scholar

47. Lueken, H. Magnetochemie; Teubner: Stuttgart, 1999.10.1007/978-3-322-80118-0Suche in Google Scholar

48. Szytuła, A., Leciejewicz, J. Handbook of Crystal Structures and Magnetic Properties of Rare Earth Intermetallics; CRC Press: Boca Raton, 1994.Suche in Google Scholar

Received: 2022-12-01
Accepted: 2023-01-03
Published Online: 2023-01-13
Published in Print: 2023-03-28

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 26.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zkri-2022-0064/html
Button zum nach oben scrollen