Abstract
The cyanamide and carbodiimide anions are complex nitrogen-derived one-dimensional species of the type NCN2− (hence, resembling O2− but more covalently bonding) that form a huge number of salt-like phases with a variety of metal cations stemming from the whole Periodic Table. Depending on the coloring (binary, ternary and quaternary salts are known), the cationic size and charge as well as covalent contributions, different distortion (tilting in particular) and/or vacancy ordering variants of cyanamides/carbodiimides occur. Herein we summarize those cyanamide/carbodiimide structures that derive from the aristotype NiAs. The crystal chemistry is discussed on the basis of group-subgroup schemes (Bärnighausen trees).
Funding source: Deutsche Forschungsgemeinschaft
Award Identifier / Grant number: 441856704
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: Alex Corkett is indebted to the Deutsche Forschungsgemeinschaft (DFG) for funding (project number 441856704).
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Liu, X., Müller, P., Kroll, P., Dronskowski, R. Inorg. Chem. 2002, 41, 4259–4265; https://doi.org/10.1021/ic020133g.Suche in Google Scholar PubMed
2. Frank, A., Caro, N. Deutsches Reichspatent 1895, 88363.Suche in Google Scholar
3. Berger, U., Schnick, W. J. Alloys Compd. 1994, 206, 179–184; https://doi.org/10.1016/0925-8388(94)90032-9.Suche in Google Scholar
4. Liu, X., Krott, M., Müller, P., Hu, C., Lueken, H., Dronskowski, R. Inorg. Chem. 2005, 44, 3001–3003; https://doi.org/10.1021/ic050050a.Suche in Google Scholar PubMed
5. Qiao, X., Mroz, D., Corkett, A. J., Bisswanger, T., Dronskowski, R. Z. Anorg. Allg. Chem. 2021, 647, 496–499; https://doi.org/10.1002/zaac.202000472.Suche in Google Scholar
6. Krott, M., Liu, X., Fokwa, B. P. T., Speldrich, M., Lueken, H., Dronskowski, R. Inorg. Chem. 2007, 46, 2204–2207; https://doi.org/10.1021/ic062051o.Suche in Google Scholar PubMed
7. Liu, X., Stork, L., Speldrich, M., Lueken, H., Dronskowski, R. Chem. Eur J. 2009, 15, 1558–1561; https://doi.org/10.1002/chem.200802422.Suche in Google Scholar PubMed
8. Schädler, H. D., Jäger, L., Senf, I. Z. Anorg. Allg. Chem. 1993, 619, 1115–1120; https://doi.org/10.1002/zaac.19936190625.Suche in Google Scholar
9. Chen, K., Dronskowski, R. J. Phys. Chem. A 2019, 123, 9328–9335; https://doi.org/10.1021/acs.jpca.9b05799.Suche in Google Scholar PubMed
10. Sougrati, M. T., Arayamparambil, J. J., Liu, X., Mann, M., Slabon, A., Stievano, L., Dronskowski, R. Dalton Trans. 2018, 47, 10827–10832; https://doi.org/10.1039/c8dt01846d.Suche in Google Scholar PubMed
11. Eguía-Barrio, A., Castillo-Martínez, E., Liu, X., Dronskowski, R., Armand, M., Rojo, T. J. Mater. Chem. 2016, 4, 1608–1611; https://doi.org/10.1039/c5ta08945j.Suche in Google Scholar
12. Sougrati, M. T., Darwiche, A., Liu, X., Mahmoud, A., Hermann, R. P., Jouen, S., Monconduit, L., Dronskowski, R., Stievano, L. Angew. Chem. Int. Ed. Engl. 2016, 55, 5090–5095; https://doi.org/10.1002/anie.201600098.Suche in Google Scholar PubMed
13. Zhao, W., Liu, Y., Liu, J., Chen, P., Chen, I. W., Huang, F., Lin, J. J. Mater. Chem. A 2013, 1, 7942–7948; https://doi.org/10.1039/c3ta10868f.Suche in Google Scholar
14. Ressnig, D., Shalom, M., Patscheider, J., Moré, R., Evangelisti, F., Antonietti, M., Patzke, G. R. J. Mater. Chem. A 2015, 3, 5072–5082; https://doi.org/10.1039/c5ta00369e.Suche in Google Scholar
15. Krott, M., Houben, A., Müller, P., Schweika, W., Dronskowski, R. Phys. Rev. B 2009, 80, 024117; https://doi.org/10.1103/physrevb.80.024117.Suche in Google Scholar
16. Tang, X., Xiang, H., Liu, X., Speldrich, M., Dronskowski, R. Angew. Chem. Int. Ed. 2010, 49, 4738–4742; https://doi.org/10.1002/anie.201000387.Suche in Google Scholar PubMed
17. Sterri, K. B., Besson, C., Houben, A., Jacobs, P., Hoelzel, M., Dronskowski, R. New J. Chem. 2016, 40, 10512–10519; https://doi.org/10.1039/c6nj02498j.Suche in Google Scholar
18. Glaser, J., Bettentrup, H., Jüstel, T., Meyer, H.-J. Inorg. Chem. 2010, 49, 2954–2959; https://doi.org/10.1021/ic902498p.Suche in Google Scholar PubMed
19. Krings, M., Montana, G., Dronskowski, R., Wickleder, C. Chem. Mater. 2011, 23, 1694–1699; https://doi.org/10.1021/cm102262u.Suche in Google Scholar
20. Qiao, X., Liu, X., Bayarjargal, L., Corkett, A. J., Wang, W., Ma, Z., Lin, Z., Dronskowski, R. J. Mater. Chem. C 2021, 9, 967–974; https://doi.org/10.1039/d0tc04835f.Suche in Google Scholar
21. Dolabdjian, K., Schedel, C., Enseling, D., Jüstel, T., Meyer, H.-J. Z. Anorg. Allg. Chem. 2017, 643, 488–494; https://doi.org/10.1002/zaac.201600353.Suche in Google Scholar
22. Meyer, H.-J. Dalton Trans. 2010, 39, 5973–5982; https://doi.org/10.1039/c001031f.Suche in Google Scholar PubMed
23. Bärnighausen, H. Commun. Math. Chem. 1980, 9, 139–175.10.1007/BF01674443Suche in Google Scholar
24. Müller, U. Z. Anorg. Allg. Chem. 2004, 630, 1519–1537; https://doi.org/10.1002/zaac.200400250.Suche in Google Scholar
25. Müller, U. Relating crystal structures by group-subgroup relations. In International Tables for Crystallography, Vol. A1, Symmetry relations between space groups, 2nd ed.; Wondratschek, H., Müller, U., Eds. John Wiley & Sons: Chichester, 2010; pp. 44–56.10.1107/97809553602060000795Suche in Google Scholar
26. Müller, U. Symmetriebeziehungen zwischen verwandten Kristallstrukturen; Vieweg + Teubner Verlag: Wiesbaden, 2012; Symmetry relationships between crystal structures, Oxford University Press, 2013; Relaciones de simetría entre estructuras cristalinas. Editorial Síntesis, Madrid, 2013.Suche in Google Scholar
27. Block, T., Seidel, S., Pöttgen, R. Z. Kristallogr. 2022, 237, 215–218; https://doi.org/10.1515/zkri-2022-0021.Suche in Google Scholar
28. Villars, P., Cenzual, K. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (Release 2021/22); ASM International®: Materials Park, Ohio (USA), 2021.Suche in Google Scholar
29. Aroyo, M. I., Perez-Mato, J. M., Orobengoa, D., Tasci, E., de la Flor, G., Kirov, A. Bulg. Chem. Commun. 2011, 43, 183–197.Suche in Google Scholar
30. Aroyo, M. I., Perez-Mato, J. M., Capillas, C., Kroumova, E., Ivantchev, S., Madariaga, G., Kirov, A., Wondratschek, H. Z. Kristallogr. 2006, 221, 15–27; https://doi.org/10.1524/zkri.2006.221.1.15.Suche in Google Scholar
31. Aroyo, M. I., Kirov, A., Capillas, C., Perez-Mato, J. M., Wondratschek, H. Acta Crystallogr. 2006, A62, 115–128.10.1107/S0108767305040286Suche in Google Scholar PubMed
32. Ivantchev, S., Kroumova, E., Madariaga, G., Pérez-Mato, J. M., Aroyo, M. I. J. Appl. Crystallogr. 2000, 33, 1190–1191; https://doi.org/10.1107/s0021889800007135.Suche in Google Scholar
33. Kroumova, E., Perez-Mato, J. M., Aroyo, M. I. J. Appl. Crystallogr. 1998, 31, 646; https://doi.org/10.1107/s0021889898005524.Suche in Google Scholar
34. Stokes, H. T., Hatch, D. M., Campbell, B. J. Isodistort; Isotropy Software Suite: Utah, USA. https://iso.byu.edu.Suche in Google Scholar
35. Campbell, B. J., Stokes, H. T., Tanner, D. E., Hatch, D. M. J. Appl. Crystallogr. 2006, 39, 607–614; https://doi.org/10.1107/s0021889806014075.Suche in Google Scholar
36. Dolabdjian, K., Castro, C., Meyer, H.-J. Eur. J. Inorg. Chem. 2018, 1624–1630.10.1002/ejic.201800183Suche in Google Scholar
37. Corkett, A. J., Dronskowski, R. Dalton Trans. 2019, 48, 15029–15035; https://doi.org/10.1039/c9dt03062j.Suche in Google Scholar PubMed
38. Müller, U. Inorganic Structural Chemistry, 2nd ed.; J. Wiley & Sons: Chichester/NewYork/Brisbane/Toronto/Singapore, 2006.Suche in Google Scholar
39. Liu, X., Wankeu, M. A., Lueken, H., Dronskowski, R. Z. Naturforsch. 2005, 60b, 593–596.10.1515/znb-2005-0601Suche in Google Scholar
40. Liu, X., Dronskowski, R., Kremer, R. K., Ahrens, M., Lee, C., Whangbo, M. H. J. Phys. Chem. C 2008, 112, 11013–11017; https://doi.org/10.1021/jp8007199.Suche in Google Scholar
41. Tchougréeff, A. L., Liu, X., Müller, P., van Beek, W., Ruschewitz, U., Dronskowski, R. J. Phys. Chem. Lett. 2012, 3, 3360–3366; https://doi.org/10.1021/jz301722b.Suche in Google Scholar
42. Jacobs, P., Houben, A., Tchougréeff, A. L., Dronskowski, R. J. Chem. Phys. 2013, 139, 224707; https://doi.org/10.1063/1.4840555.Suche in Google Scholar PubMed
43. Tchougréeff, A. L., Stoffel, R. P., Houben, A., Jacobs, P., Dronskowski, R., Pregelj, M., Zorko, A., Arčon, D., Zaharko, O. J. Phys.: Condens. Matter 2017, 29, 235701; https://doi.org/10.1088/1361-648x/aa6e73.Suche in Google Scholar PubMed
44. Dronskowski, R. Z. Naturforsch. 1995, 50b, 1245–1251.10.1515/znb-1995-0819Suche in Google Scholar
45. Reckeweg, O., Schleid, T., DiSalvo, F. J. Z. Naturforsch. 2007, 62b, 658–662.10.1515/znb-2007-0505Suche in Google Scholar
46. Neukirch, M., Tragl, S., Meyer, H.-J. Inorg. Chem. 2006, 45, 8188–8193; https://doi.org/10.1021/ic0608952.Suche in Google Scholar PubMed
47. Glaser, J., Unverfehrt, L., Bettentrup, H., Heymann, G., Huppertz, H., Jüstel, T., Meyer, H.-J. Inorg. Chem. 2008, 47, 10455–10460; https://doi.org/10.1021/ic800985k.Suche in Google Scholar PubMed
48. Qiao, X., Chen, K., Corkett, A. J., Mroz, D., Huang, X., Wang, R., Nelson, R., Dronskowski, R. Inorg. Chem. 2021, 60, 12664–12670; https://doi.org/10.1021/acs.inorgchem.1c02177.Suche in Google Scholar PubMed
49. Unverfehrt, L., Ströbele, M., Meyer, H.-J. Z. Anorg. Allg. Chem. 2013, 639, 22–24; https://doi.org/10.1002/zaac.201200385.Suche in Google Scholar
50. Kubus, M., Heinicke, R., Ströbele, M., Enseling, D., Jüstel, T., Meyer, H.-J. Mater. Res. Bull. 2015, 62, 37–41; https://doi.org/10.1016/j.materresbull.2014.10.073.Suche in Google Scholar
51. Corkett, A. J., Chen, K., Dronskowski, R. Eur. J. Inorg. Chem. 2020, 2596–2602; https://doi.org/10.1002/ejic.202000244.Suche in Google Scholar
52. Shannon, R. D. Acta Crystallogr. 1976, A32, 751–767.10.1107/S0567739476001551Suche in Google Scholar
53. Guseinov, G. D., Ismailov, M. Z., Guseinov, G. G. Mater. Res. Bull. 1967, 2, 765–772; https://doi.org/10.1016/0025-5408(67)90002-5.Suche in Google Scholar
54. Dolabdjian, K., Kobald, A., Romao, C. P., Meyer, H.-J. Dalton Trans. 2018, 47, 10249–10255; https://doi.org/10.1039/c8dt02001a.Suche in Google Scholar PubMed
55. Corkett, A. J., Chen, Z., Ertural, C., Slabon, A., Dronskowski, R. Inorg. Chem. 2022, 61, 18221–18228; https://doi.org/10.1021/acs.inorgchem.2c03043.Suche in Google Scholar PubMed
56. Qiao, X., Corkett, A. J., Stoffel, R. P., Dronskowski, R. Z. Anorg. Allg. Chem. 2021, 647, 2162–2166; https://doi.org/10.1002/zaac.202100132.Suche in Google Scholar
57. Ronneteg, S., Lumey, M.-W., Dronskowski, R., Berger, R. J. Alloys Compd. 2005, 403, 71–75; https://doi.org/10.1016/j.jallcom.2005.05.028.Suche in Google Scholar
58. Lange, S., Nilges, T., Hoffmann, R.-D., Pöttgen, R. Z. Anorg. Allg. Chem. 2006, 632, 1163–1166; https://doi.org/10.1002/zaac.200500414.Suche in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- In this issue
- Micro Review
- Organic-inorganic interface chemistry for sustainable materials
- Inorganic Crystal Structures (Original Paper)
- Magnesium-rich intermetallic compounds Gd5Cu5Mg13 and Tb5Cu5Mg13 – intergrowth variants with CsCl and AlB2 related slabs
- NiAs-derived cyanamide (carbodiimide) structures – a group-theoretical view
- Trimorphic TaCrP – A diffraction and 31P solid state NMR spectroscopic study
- Microporous framework polar silicate-germanates with a wide isomorphic substitution: (K2.9Cs0.1)(Sc0.7In0.3)[(Si2.95Ge0.05)O9]·H2O and (K2.16Cs0.84)Bi[(Si1.5Ge1.5)O9]·H2O
- Organic and Metalorganic Crystal Structures (Original Paper)
- A new copper(II) complex containing triclopyr: one-pot crystallization, structure, conformation and Hirshfeld surface analyses
- An asymmetric mononuclear cobalt(II) compound derived from 3-bromo-pyridine-2,6-dicarboxylic acid involving in-situ hydrothermal decarboxylation: structure, magnetic property and Hirshfeld surface analysis
Artikel in diesem Heft
- Frontmatter
- In this issue
- Micro Review
- Organic-inorganic interface chemistry for sustainable materials
- Inorganic Crystal Structures (Original Paper)
- Magnesium-rich intermetallic compounds Gd5Cu5Mg13 and Tb5Cu5Mg13 – intergrowth variants with CsCl and AlB2 related slabs
- NiAs-derived cyanamide (carbodiimide) structures – a group-theoretical view
- Trimorphic TaCrP – A diffraction and 31P solid state NMR spectroscopic study
- Microporous framework polar silicate-germanates with a wide isomorphic substitution: (K2.9Cs0.1)(Sc0.7In0.3)[(Si2.95Ge0.05)O9]·H2O and (K2.16Cs0.84)Bi[(Si1.5Ge1.5)O9]·H2O
- Organic and Metalorganic Crystal Structures (Original Paper)
- A new copper(II) complex containing triclopyr: one-pot crystallization, structure, conformation and Hirshfeld surface analyses
- An asymmetric mononuclear cobalt(II) compound derived from 3-bromo-pyridine-2,6-dicarboxylic acid involving in-situ hydrothermal decarboxylation: structure, magnetic property and Hirshfeld surface analysis