Startseite NiAs-derived cyanamide (carbodiimide) structures – a group-theoretical view
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

NiAs-derived cyanamide (carbodiimide) structures – a group-theoretical view

  • Rainer Pöttgen EMAIL logo , Alex J. Corkett und Richard Dronskowski EMAIL logo
Veröffentlicht/Copyright: 26. Januar 2023

Abstract

The cyanamide and carbodiimide anions are complex nitrogen-derived one-dimensional species of the type NCN2− (hence, resembling O2− but more covalently bonding) that form a huge number of salt-like phases with a variety of metal cations stemming from the whole Periodic Table. Depending on the coloring (binary, ternary and quaternary salts are known), the cationic size and charge as well as covalent contributions, different distortion (tilting in particular) and/or vacancy ordering variants of cyanamides/carbodiimides occur. Herein we summarize those cyanamide/carbodiimide structures that derive from the aristotype NiAs. The crystal chemistry is discussed on the basis of group-subgroup schemes (Bärnighausen trees).


Corresponding authors: Rainer Pöttgen, Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany, E-mail: ; and Richard Dronskowski, Chair of Solid-State and Quantum Chemistry, Institute of Inorganic Chemistry, RWTH Aachen University, 52056 Aachen, Germany; and Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen, China, E-mail:

Funding source: Deutsche Forschungsgemeinschaft

Award Identifier / Grant number: 441856704

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Alex Corkett is indebted to the Deutsche Forschungsgemeinschaft (DFG) for funding (project number 441856704).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Liu, X., Müller, P., Kroll, P., Dronskowski, R. Inorg. Chem. 2002, 41, 4259–4265; https://doi.org/10.1021/ic020133g.Suche in Google Scholar PubMed

2. Frank, A., Caro, N. Deutsches Reichspatent 1895, 88363.Suche in Google Scholar

3. Berger, U., Schnick, W. J. Alloys Compd. 1994, 206, 179–184; https://doi.org/10.1016/0925-8388(94)90032-9.Suche in Google Scholar

4. Liu, X., Krott, M., Müller, P., Hu, C., Lueken, H., Dronskowski, R. Inorg. Chem. 2005, 44, 3001–3003; https://doi.org/10.1021/ic050050a.Suche in Google Scholar PubMed

5. Qiao, X., Mroz, D., Corkett, A. J., Bisswanger, T., Dronskowski, R. Z. Anorg. Allg. Chem. 2021, 647, 496–499; https://doi.org/10.1002/zaac.202000472.Suche in Google Scholar

6. Krott, M., Liu, X., Fokwa, B. P. T., Speldrich, M., Lueken, H., Dronskowski, R. Inorg. Chem. 2007, 46, 2204–2207; https://doi.org/10.1021/ic062051o.Suche in Google Scholar PubMed

7. Liu, X., Stork, L., Speldrich, M., Lueken, H., Dronskowski, R. Chem. Eur J. 2009, 15, 1558–1561; https://doi.org/10.1002/chem.200802422.Suche in Google Scholar PubMed

8. Schädler, H. D., Jäger, L., Senf, I. Z. Anorg. Allg. Chem. 1993, 619, 1115–1120; https://doi.org/10.1002/zaac.19936190625.Suche in Google Scholar

9. Chen, K., Dronskowski, R. J. Phys. Chem. A 2019, 123, 9328–9335; https://doi.org/10.1021/acs.jpca.9b05799.Suche in Google Scholar PubMed

10. Sougrati, M. T., Arayamparambil, J. J., Liu, X., Mann, M., Slabon, A., Stievano, L., Dronskowski, R. Dalton Trans. 2018, 47, 10827–10832; https://doi.org/10.1039/c8dt01846d.Suche in Google Scholar PubMed

11. Eguía-Barrio, A., Castillo-Martínez, E., Liu, X., Dronskowski, R., Armand, M., Rojo, T. J. Mater. Chem. 2016, 4, 1608–1611; https://doi.org/10.1039/c5ta08945j.Suche in Google Scholar

12. Sougrati, M. T., Darwiche, A., Liu, X., Mahmoud, A., Hermann, R. P., Jouen, S., Monconduit, L., Dronskowski, R., Stievano, L. Angew. Chem. Int. Ed. Engl. 2016, 55, 5090–5095; https://doi.org/10.1002/anie.201600098.Suche in Google Scholar PubMed

13. Zhao, W., Liu, Y., Liu, J., Chen, P., Chen, I. W., Huang, F., Lin, J. J. Mater. Chem. A 2013, 1, 7942–7948; https://doi.org/10.1039/c3ta10868f.Suche in Google Scholar

14. Ressnig, D., Shalom, M., Patscheider, J., Moré, R., Evangelisti, F., Antonietti, M., Patzke, G. R. J. Mater. Chem. A 2015, 3, 5072–5082; https://doi.org/10.1039/c5ta00369e.Suche in Google Scholar

15. Krott, M., Houben, A., Müller, P., Schweika, W., Dronskowski, R. Phys. Rev. B 2009, 80, 024117; https://doi.org/10.1103/physrevb.80.024117.Suche in Google Scholar

16. Tang, X., Xiang, H., Liu, X., Speldrich, M., Dronskowski, R. Angew. Chem. Int. Ed. 2010, 49, 4738–4742; https://doi.org/10.1002/anie.201000387.Suche in Google Scholar PubMed

17. Sterri, K. B., Besson, C., Houben, A., Jacobs, P., Hoelzel, M., Dronskowski, R. New J. Chem. 2016, 40, 10512–10519; https://doi.org/10.1039/c6nj02498j.Suche in Google Scholar

18. Glaser, J., Bettentrup, H., Jüstel, T., Meyer, H.-J. Inorg. Chem. 2010, 49, 2954–2959; https://doi.org/10.1021/ic902498p.Suche in Google Scholar PubMed

19. Krings, M., Montana, G., Dronskowski, R., Wickleder, C. Chem. Mater. 2011, 23, 1694–1699; https://doi.org/10.1021/cm102262u.Suche in Google Scholar

20. Qiao, X., Liu, X., Bayarjargal, L., Corkett, A. J., Wang, W., Ma, Z., Lin, Z., Dronskowski, R. J. Mater. Chem. C 2021, 9, 967–974; https://doi.org/10.1039/d0tc04835f.Suche in Google Scholar

21. Dolabdjian, K., Schedel, C., Enseling, D., Jüstel, T., Meyer, H.-J. Z. Anorg. Allg. Chem. 2017, 643, 488–494; https://doi.org/10.1002/zaac.201600353.Suche in Google Scholar

22. Meyer, H.-J. Dalton Trans. 2010, 39, 5973–5982; https://doi.org/10.1039/c001031f.Suche in Google Scholar PubMed

23. Bärnighausen, H. Commun. Math. Chem. 1980, 9, 139–175.10.1007/BF01674443Suche in Google Scholar

24. Müller, U. Z. Anorg. Allg. Chem. 2004, 630, 1519–1537; https://doi.org/10.1002/zaac.200400250.Suche in Google Scholar

25. Müller, U. Relating crystal structures by group-subgroup relations. In International Tables for Crystallography, Vol. A1, Symmetry relations between space groups, 2nd ed.; Wondratschek, H., Müller, U., Eds. John Wiley & Sons: Chichester, 2010; pp. 44–56.10.1107/97809553602060000795Suche in Google Scholar

26. Müller, U. Symmetriebeziehungen zwischen verwandten Kristallstrukturen; Vieweg + Teubner Verlag: Wiesbaden, 2012; Symmetry relationships between crystal structures, Oxford University Press, 2013; Relaciones de simetría entre estructuras cristalinas. Editorial Síntesis, Madrid, 2013.Suche in Google Scholar

27. Block, T., Seidel, S., Pöttgen, R. Z. Kristallogr. 2022, 237, 215–218; https://doi.org/10.1515/zkri-2022-0021.Suche in Google Scholar

28. Villars, P., Cenzual, K. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (Release 2021/22); ASM International®: Materials Park, Ohio (USA), 2021.Suche in Google Scholar

29. Aroyo, M. I., Perez-Mato, J. M., Orobengoa, D., Tasci, E., de la Flor, G., Kirov, A. Bulg. Chem. Commun. 2011, 43, 183–197.Suche in Google Scholar

30. Aroyo, M. I., Perez-Mato, J. M., Capillas, C., Kroumova, E., Ivantchev, S., Madariaga, G., Kirov, A., Wondratschek, H. Z. Kristallogr. 2006, 221, 15–27; https://doi.org/10.1524/zkri.2006.221.1.15.Suche in Google Scholar

31. Aroyo, M. I., Kirov, A., Capillas, C., Perez-Mato, J. M., Wondratschek, H. Acta Crystallogr. 2006, A62, 115–128.10.1107/S0108767305040286Suche in Google Scholar PubMed

32. Ivantchev, S., Kroumova, E., Madariaga, G., Pérez-Mato, J. M., Aroyo, M. I. J. Appl. Crystallogr. 2000, 33, 1190–1191; https://doi.org/10.1107/s0021889800007135.Suche in Google Scholar

33. Kroumova, E., Perez-Mato, J. M., Aroyo, M. I. J. Appl. Crystallogr. 1998, 31, 646; https://doi.org/10.1107/s0021889898005524.Suche in Google Scholar

34. Stokes, H. T., Hatch, D. M., Campbell, B. J. Isodistort; Isotropy Software Suite: Utah, USA. https://iso.byu.edu.Suche in Google Scholar

35. Campbell, B. J., Stokes, H. T., Tanner, D. E., Hatch, D. M. J. Appl. Crystallogr. 2006, 39, 607–614; https://doi.org/10.1107/s0021889806014075.Suche in Google Scholar

36. Dolabdjian, K., Castro, C., Meyer, H.-J. Eur. J. Inorg. Chem. 2018, 1624–1630.10.1002/ejic.201800183Suche in Google Scholar

37. Corkett, A. J., Dronskowski, R. Dalton Trans. 2019, 48, 15029–15035; https://doi.org/10.1039/c9dt03062j.Suche in Google Scholar PubMed

38. Müller, U. Inorganic Structural Chemistry, 2nd ed.; J. Wiley & Sons: Chichester/NewYork/Brisbane/Toronto/Singapore, 2006.Suche in Google Scholar

39. Liu, X., Wankeu, M. A., Lueken, H., Dronskowski, R. Z. Naturforsch. 2005, 60b, 593–596.10.1515/znb-2005-0601Suche in Google Scholar

40. Liu, X., Dronskowski, R., Kremer, R. K., Ahrens, M., Lee, C., Whangbo, M. H. J. Phys. Chem. C 2008, 112, 11013–11017; https://doi.org/10.1021/jp8007199.Suche in Google Scholar

41. Tchougréeff, A. L., Liu, X., Müller, P., van Beek, W., Ruschewitz, U., Dronskowski, R. J. Phys. Chem. Lett. 2012, 3, 3360–3366; https://doi.org/10.1021/jz301722b.Suche in Google Scholar

42. Jacobs, P., Houben, A., Tchougréeff, A. L., Dronskowski, R. J. Chem. Phys. 2013, 139, 224707; https://doi.org/10.1063/1.4840555.Suche in Google Scholar PubMed

43. Tchougréeff, A. L., Stoffel, R. P., Houben, A., Jacobs, P., Dronskowski, R., Pregelj, M., Zorko, A., Arčon, D., Zaharko, O. J. Phys.: Condens. Matter 2017, 29, 235701; https://doi.org/10.1088/1361-648x/aa6e73.Suche in Google Scholar PubMed

44. Dronskowski, R. Z. Naturforsch. 1995, 50b, 1245–1251.10.1515/znb-1995-0819Suche in Google Scholar

45. Reckeweg, O., Schleid, T., DiSalvo, F. J. Z. Naturforsch. 2007, 62b, 658–662.10.1515/znb-2007-0505Suche in Google Scholar

46. Neukirch, M., Tragl, S., Meyer, H.-J. Inorg. Chem. 2006, 45, 8188–8193; https://doi.org/10.1021/ic0608952.Suche in Google Scholar PubMed

47. Glaser, J., Unverfehrt, L., Bettentrup, H., Heymann, G., Huppertz, H., Jüstel, T., Meyer, H.-J. Inorg. Chem. 2008, 47, 10455–10460; https://doi.org/10.1021/ic800985k.Suche in Google Scholar PubMed

48. Qiao, X., Chen, K., Corkett, A. J., Mroz, D., Huang, X., Wang, R., Nelson, R., Dronskowski, R. Inorg. Chem. 2021, 60, 12664–12670; https://doi.org/10.1021/acs.inorgchem.1c02177.Suche in Google Scholar PubMed

49. Unverfehrt, L., Ströbele, M., Meyer, H.-J. Z. Anorg. Allg. Chem. 2013, 639, 22–24; https://doi.org/10.1002/zaac.201200385.Suche in Google Scholar

50. Kubus, M., Heinicke, R., Ströbele, M., Enseling, D., Jüstel, T., Meyer, H.-J. Mater. Res. Bull. 2015, 62, 37–41; https://doi.org/10.1016/j.materresbull.2014.10.073.Suche in Google Scholar

51. Corkett, A. J., Chen, K., Dronskowski, R. Eur. J. Inorg. Chem. 2020, 2596–2602; https://doi.org/10.1002/ejic.202000244.Suche in Google Scholar

52. Shannon, R. D. Acta Crystallogr. 1976, A32, 751–767.10.1107/S0567739476001551Suche in Google Scholar

53. Guseinov, G. D., Ismailov, M. Z., Guseinov, G. G. Mater. Res. Bull. 1967, 2, 765–772; https://doi.org/10.1016/0025-5408(67)90002-5.Suche in Google Scholar

54. Dolabdjian, K., Kobald, A., Romao, C. P., Meyer, H.-J. Dalton Trans. 2018, 47, 10249–10255; https://doi.org/10.1039/c8dt02001a.Suche in Google Scholar PubMed

55. Corkett, A. J., Chen, Z., Ertural, C., Slabon, A., Dronskowski, R. Inorg. Chem. 2022, 61, 18221–18228; https://doi.org/10.1021/acs.inorgchem.2c03043.Suche in Google Scholar PubMed

56. Qiao, X., Corkett, A. J., Stoffel, R. P., Dronskowski, R. Z. Anorg. Allg. Chem. 2021, 647, 2162–2166; https://doi.org/10.1002/zaac.202100132.Suche in Google Scholar

57. Ronneteg, S., Lumey, M.-W., Dronskowski, R., Berger, R. J. Alloys Compd. 2005, 403, 71–75; https://doi.org/10.1016/j.jallcom.2005.05.028.Suche in Google Scholar

58. Lange, S., Nilges, T., Hoffmann, R.-D., Pöttgen, R. Z. Anorg. Allg. Chem. 2006, 632, 1163–1166; https://doi.org/10.1002/zaac.200500414.Suche in Google Scholar

Received: 2022-11-04
Accepted: 2023-01-14
Published Online: 2023-01-26
Published in Print: 2023-03-28

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 28.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zkri-2022-0062/html
Button zum nach oben scrollen