Startseite The effect of the withdrawal speed on properties of nickel oxide thin films
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The effect of the withdrawal speed on properties of nickel oxide thin films

  • Zohra Nazir Kayani EMAIL logo , Atiqa Aslam , Rabia Ishaque , Syeda Nosheen Zahra , Hifza Hanif , Noor-Ul-Ain Maken und Hajra Khan
Veröffentlicht/Copyright: 19. Juli 2019

Abstract

Nickel oxide thin films have been prepared by sol-gel dip-coating technique on glass substrate. It is shown that nickel oxide thin films have poly crystalline nature. Nickel oxide thin films exhibit high transmission (39–85%) in the wavelength range of 400–900 nm, strong absorption between 300 and 400 nm wavelengths and decrease of band gap values are in the range 3.69–3.27 eV with increase of withdrawal speed. High band gap at low withdrawal speed is because of the small average crystallite size, which decreases with increase in withdrawal speed. The SEM micrograph shows cubic crystallites and surface of thin films become dense, smooth and homogeneous with an increase in withdrawal speed. Assessment of nickel oxide deposition conditions provides gateway for effective and cheap solar cells.

Acknowledgement

Authors want to thank PINSTECH Islamabad for providing X-ray diffractrometer facility. Authors want to thank Prof. Dr. Shahzad Naseem and Dr. Saira Riaz of Centre for Solid State Physics, University of the Punjab for providing database to interpret XRD graphs and for providing the scanning electron microscope facility.

References

[1] E. Fujii, A. Tomozawa, H. Torii, R. Takayama, Preferred orientations of NiO films prepared by plasma-enhanced metal-organic chemical vapor deposition. Jpn. J. Appl. Phys.1996, 35, L328.10.1143/JJAP.35.L328Suche in Google Scholar

[2] H. Sato, T. Minami, S. Takata, T. Yamada, Transparent conducting p-type NiO thin films prepared by magnetron sputtering. Thin Solid Films1993, 236, 27.10.1016/0040-6090(93)90636-4Suche in Google Scholar

[3] K. Youshmura, T. Miki, S. Tanemura, Nickel oxide electro-chromic Thin films prepared by reactive dc magnetron sputtering. Jpn. J. Appl. Phys.1995, 34, L2440.10.1143/JJAP.34.2440Suche in Google Scholar

[4] N. Shaigan, D. G. Ivey, W. Chen, Metal-oxide scale interfacial imperfections and performance of stainless steels utilized as interconnects in solid oxide fuel cells. J. Electrochem. Soc.2009, 156, B765.10.1149/1.3116252Suche in Google Scholar

[5] K. R. Cerc, P. Bukovec, B. Pihlar, V. A. B. Surca, B. Orel, G. Drazic, Preparation and structural investigations of electro-chromic nano-sized NiOx films made via the sol-gel route. Solid State Ionics2003, 165, 191.10.1016/j.ssi.2003.08.032Suche in Google Scholar

[6] M. Szindler, M. M. Szindler, A. L. Dobrzański, T. Jung, NiO nanoparticles prepared by the sol-gel method for a dye sensitized solar cell applications. Arch. Mater. Sci. Eng.2018, 92, 15.10.5604/01.3001.0012.5507Suche in Google Scholar

[7] V. Nogueira, I. Lopes, T. A. P. Rocha-Santos, M. G. Rasteiro, N. Abrantes, F. Gonçalves, Assessing the ecotoxicity of metal nano-oxides with potential for wastewater treatment. Environ. Sci. Pollut. Res.2015, 22, 13212.10.1007/s11356-015-4581-9Suche in Google Scholar PubMed

[8] H. Kumagai, M. Matsumoto, K. Toyoda, M. Obara, Preparation and characteristics of nickel oxide thin film by controlled growth with sequential surface chemical reactions. J. Mater. Sci. Lett.1996, 15, 1081.10.1007/BF00274914Suche in Google Scholar

[9] Z. Wei, Q. Zhou, J. Wang, Y. Gui, Z. Wen, A novel porous NiO Nano-sheet and its H2 sensing performance. Mater. Lett.2019, 245, 166.10.1016/j.matlet.2019.03.013Suche in Google Scholar

[10] J. Hu, J. Yang, W. Wang, Y. Xue, Y. Sun, P. Li, K. Lian, W. Zhang, L. Chen, J. Shi, Y. Chen, Synthesis and gas sensing properties of NiO/SnO2 hierarchical structures toward ppb-level acetone detection. Mater. Res. Bull.2018, 102, 294.10.1016/j.materresbull.2018.02.006Suche in Google Scholar

[11] J. M. Choi, J. H. Byun, S. S. Kim, Influence of grain size on gas-sensing properties of chemiresistive P-type NiO nanofibers. Sens. Actuators B Chem.2015, 227, 149.10.1016/j.snb.2015.12.014Suche in Google Scholar

[12] E. Turgut, O. Coban, S. Sarıtas, S. Tuzemen, M. Yıldırım, E. Gur, Oxygen partial pressure effects on the RF sputtered p-type NiO hydrogen gas sensors. Appl. Surf. Sci.2018, 435, 880.10.1016/j.apsusc.2017.11.133Suche in Google Scholar

[13] P. V. Tong, N. D. Hoa, N. V. Duy, V. V. Quang, N. T. Lam, N. V. Hieu, In-situ decoration of Pd nanocrystals on crystalline mesoporous NiO nanosheets for effective hydrogen gas sensors. Int. J. Hydrog. Energy2013, 38, 12090.10.1016/j.ijhydene.2013.06.120Suche in Google Scholar

[14] N. D. Hoa, C. M. Hung, N. V. Duy, N. V. Hieu, Nanoporous and crystal evolution in nickel oxide nanosheets for enhanced gas-sensing performance. Sens. Actuators B Chem.2018, 273, 784.10.1016/j.snb.2018.06.095Suche in Google Scholar

[15] S. Zargouni, L. Derbali, M. Ouadhour, M. Rigon, A. Martucci, H. Ezzaouia, Elaboration and characterization of PVP-assisted NiO thin films for enhanced sensitivity toward H2 and NO2 gases. Ceram. Int.2019, 45, 5779.10.1016/j.ceramint.2018.12.044Suche in Google Scholar

[16] G. S. Gund, C. D. Lokhande, H. S. Park, Controlled synthesis of hierarchical nanoflake structure of NiO thin film for supercapacitor application. J. Alloys Compd.2018, 741, 549.10.1016/j.jallcom.2018.01.166Suche in Google Scholar

[17] M. Sabzia, A. S. H. Mousavi, Microstructural analysis and optical property evaluation of sol-gel heterostructured NiO-TiO2 film used for solar panels. Ceram. Int.2019, 45, 3250.10.1016/j.ceramint.2018.10.229Suche in Google Scholar

[18] R. Romero, F. Martin, B. J. R. Ramos, D. Leinen, Synthesis and characterization of nanostructured nickel oxide thin films prepared with chemical spray pyrolysis. Thin Solid Films2010, 518, 4499.10.1016/j.tsf.2009.12.016Suche in Google Scholar

[19] A. Alshahrie, I. S. Yahia, A. Alghamdi, P. Z. Al Hassan, Morphological, structural and optical dispersion parameters of Cd-doped NiO nanostructure thin film. Optik2016, 127, 5105.10.1016/j.ijleo.2016.02.023Suche in Google Scholar

[20] X. Wang, Y. Li, G. Z. Wang, Characterization of NiO thin film grown by two-step processes. Phys. B2009, 404, 1058.10.1016/j.physb.2008.10.059Suche in Google Scholar

[21] M. Krunks, J. Soon, T. Unt, A. Mere, V. Mikli, Deposition of p-type NiO films by chemical spray pyrolysis. Vaccum J.2014, 107, 242.10.1016/j.vacuum.2014.02.013Suche in Google Scholar

[22] D. B. Kuang, B. X. Lei, Y. P. Pan, X. Y. Yu, C. Y. Su, Fabrication of novel hierarchical β-Ni(OH)2 and NiO microspheres via an easy hydrothermal process. J. Phys. Chem.2009, 113, 5508.10.1021/jp809013gSuche in Google Scholar

[23] A. A. Al-Ghamdi, W. E. Mahmoud, S. J. Yaghmour, F. M. Al-Marzouki, Structure and optical properties of nanocrystalline NiO thin film synthesized by sol–gel spin-coating method. J. Alloys Compd.2009, 486, 9.10.1016/j.jallcom.2009.06.139Suche in Google Scholar

[24] B. A. Reguig, A. Khelil, L. Cattin, M. Morsli, J. C. Bernède, Properties of NiO thin films deposited by intermittent spray pyrolysis process. Appl. Surf. Sci.2007, 253, 4330.10.1016/j.apsusc.2006.09.046Suche in Google Scholar

[25] M. Eslamian, Spray on thin film PV solar cells: advances, potentials and challenges. Coatings2014, 4, 60.10.3390/coatings4010060Suche in Google Scholar

[26] M. Pavan, S. Rühle, A. Ginsburg, D. A. Keller, H. N. Barad, P. M. Sberna, E. Fortunato, TiO2/Cu2O all-Oxide heterojunction solar cells produced by spray pyrolysis. Sol. Energy Mater. Sol. Cells2015, 132, 549.10.1016/j.solmat.2014.10.005Suche in Google Scholar

[27] A. B. Kunz, Electronic structure of NiO. J. Phys. C Solid State. Phys.1981, 14, L455.10.1088/0022-3719/14/16/001Suche in Google Scholar

[28] K. O. Ukoba, E. A. C. Eloka, F. L. Inambao, Review of nanostructured NiO thin film deposition using the spray pyrolysis technique. Renew. Sustain. Energy Rev.2018, 82, 2900.10.1016/j.rser.2017.10.041Suche in Google Scholar

[29] K. O. Ukoba, F. L. Inambao, E. A. C. Eloka, Influence of annealing on properties of spray deposited nickle oxide films for solar cells. Energy Procedia2017, 142, 244.10.1016/j.egypro.2017.12.039Suche in Google Scholar

[30] A. Agrawal, H. R. Habibi, R. K. Agrawal, J. P. Cronin, D. M. Roberts, C. P. Rsue, C. M. Lampert, Effect of deposition pressure on the microstructure and electro-chromic properties of electron-beam-evaporated nickel oxide Films. Thin Solid Films1992, 221, L239253.10.1016/0040-6090(92)90822-SSuche in Google Scholar

[31] M. Bonger, A. Fuchs, K. Scharnagl, R. Winter, T. Doll, I. Eisele, Thin (NiO)1−x(Al2O3)x, Al doped and Al coated NiO layers for gas detection with HSGFET. Sens. Actuators B Chem.199847, 145.10.1016/S0925-4005(98)00016-1Suche in Google Scholar

[32] S. Ratnesh, A. D. Acharya, S. B. Shrivastava, T. Shripathi, V. Ganesan, Preparation and characterization of transparent NiO Thin films deposited by spray pyrolysis technique. Optik2014, 125, 6751.10.1016/j.ijleo.2014.07.104Suche in Google Scholar

[33] T. Chtoukia, L. Soumahorob, B. Kulykb, H. Bougharrafc, B. Kabouchic, H. Erguiga, B. Sahraoui, Comparison of structural, morphological, linear and nonlinear optical properties of NiO thin films elaborated by spin-coating and spray pyrolysis. Optik2017, 128, 8.10.1016/j.ijleo.2016.10.007Suche in Google Scholar

[34] M. Tanaka, M. Mukai, Y. Fujimori, M. Kondoh, Y. Tasaka, H. Baba, S. Usami, Transition metal oxide films prepared by pulsed laser deposition for atomic beam detection. Thin Solid Film1996, 281–282, 453.10.1016/0040-6090(96)08673-7Suche in Google Scholar

[35] W. C. Yeh, M. Matsumura, Chemical vapor deposition of nickel oxide films from Bis-π-cyclopentadienyl-nickel. Jpn. J. Appl. Phys.1997, 36, L6884.10.1143/JJAP.36.6884Suche in Google Scholar

[36] P. Puspharajah, S. Radhakrshna, A. K. Arof, Transparent conducting lithium-doped nickel oxide thin films by spray pyrolysis technique. J. Mater. Sci.1997, 32, 3001.10.1023/A:1018657424566Suche in Google Scholar

[37] G. Wen, K. N. Hui, K. S. Hui, High conductivity nickel oxide thin films by a facile sol–gel method. Mater. Lett.2002, 92, L291.10.1016/j.matlet.2012.10.109Suche in Google Scholar

[38] U. Cindemira, M. Trawkab, J. Smulkob, C. G. Granqvista, L. Osterlunda, G. A. Niklasson, Fluctuation-enhanced and conductometric gas sensing with nanocrystalline NiO thin films: a comparison. Sens. Actuators B2017, 242, 132.10.1016/j.snb.2016.11.015Suche in Google Scholar

[39] Y. R. Park, K. J. Kim, Sol–gel preparation and optical characterization of NiO and Ni1−xZnxO thin films. J. Cryst. Growth2003, 258, 380.10.1016/S0022-0248(03)01560-4Suche in Google Scholar

[40] G. T. Lay, D. L. Kun, Synthesis and characterization of NiO nanoparticles by sol-gel method. Mater. Trans.2012, 53, 2135.10.2320/matertrans.M2012244Suche in Google Scholar

[41] Z. N. Kayani, S. Riaz, S. Naseem, R. Zia, Synthesis and characterization of Ni2O3 Thin Films, ACEM16, Jeju, South Korea, 2016.10.1016/j.matpr.2015.11.014Suche in Google Scholar

[42] J. M. Tarascon, G. Vaughan, Y. Chabre, L. Seguin, M. Anne, A. P. Strobel, A. G. Amatucci, In situ structural and electrochemical study of Ni1-xCoxO2 metastable oxides prepared by soft chemistry. J. Solid State. Chem.1999, 147, 410.10.1006/jssc.1999.8465Suche in Google Scholar

[43] C. S. Barret, T. B. Massalski, Structure of Metals: Crystallographic Methods, Principles and Data. Perg. Press., Oxford, 1980.Suche in Google Scholar

[44] M. S. E. Goh, P. T. Chen, Q. C. Sun, C. Y. Liu, Thickness effect on the band gap and optical properties of germanium thin films. J. Appl. Phys.2010, 107, 024305.10.1063/1.3291103Suche in Google Scholar

[45] V. Svorcık, O. E. Lyutakov, I. E. Huttel, Thickness dependence of refractive index and optical gap of PMMA layers prepared under electrical field. J. Mater. Sci. Mater. Elect.2008, 19, 363.10.1007/s10854-007-9344-zSuche in Google Scholar

[46] N. Z. Kayani, S. Arshad, S. Riaz, S. Naseem, Structural, investigation of structural, optical and magnetic characteristics of Co3O4 thin films. Appl. Phys. A2019, 125, 196.10.1007/s00339-019-2501-4Suche in Google Scholar

[47] L. D. Landau, B. G. Levich, Dragging of a liquid by a moving plate. Acta Physicochim. U. S. S. R.1942, 17, 42.10.1016/B978-0-08-092523-3.50016-2Suche in Google Scholar

[48] S. Aydemir, S. Karakaya, Effects of withdrawal speed on the structural and optical properties of sol–gel derived ZnO thin films. J. Magn. Magn. Mater.2015, 373, 33.10.1016/j.jmmm.2014.01.077Suche in Google Scholar

[49] S. Aydemir, Effects of withdrawal speed on the micro-structural and optical properties of sol–gel grown ZnO:Al thin films. Vacuum2015, 12051, 58.10.1016/j.vacuum.2015.05.041Suche in Google Scholar

[50] G. Burns, M. A. Glazer, Space Groups for Solid State Scientists. Academic Press, Boston, 2. edition, 1990.Suche in Google Scholar

[51] V. B. Sandomirskii, Quantum size effect in a semi-metals. Sov. Phys. JTEP.1967, 25, 101.Suche in Google Scholar

[52] S. Bhaskar, S. B. Majumder, M. Jain, P. S. Dobal, R. S. Katiyar, Studies on the structural, micro structural and optical properties of sol-gel derived lead lanthanum titanate thin films. Mat. Sci. Eng. B2001, 87, L178.10.1016/S0921-5107(01)00739-5Suche in Google Scholar

[53] C. J. Brinker, G. C. Frye, A. J. Hurd, C. S. Ashley, Fundamentals of sol-gel dip coating. Thin Solid Film1991, 121, 97.10.1016/0040-6090(91)90158-TSuche in Google Scholar

Received: 2019-05-03
Accepted: 2019-07-05
Published Online: 2019-07-19
Published in Print: 2019-10-25

©2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 27.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zkri-2019-0028/html
Button zum nach oben scrollen