Home Structural studies on dihydropyrimidine derivatives as Mycobacterium tuberculosis coenzyme-A carboxylase inhibitors
Article
Licensed
Unlicensed Requires Authentication

Structural studies on dihydropyrimidine derivatives as Mycobacterium tuberculosis coenzyme-A carboxylase inhibitors

  • Lóide O. Sallum , Jean M.F. Custodio , Allane C.C. Rodrigues , Jean F.R. Ribeiro , Beatriz P. Bezerra , Alejandro P. Ayala , Luciana M. Ramos , Ademir J. Camargo and Hamilton B. Napolitano EMAIL logo
Published/Copyright: September 27, 2019

Abstract

A dihydropyrimidine (DHPM) derivative was synthesized, characterized by X-ray diffraction and searched in silico for its inhibitory activities against AccD5 enzyme, the CT domain of a Mycobacterium tuberculosis ACCase. Its molecular structure was compared to another DHPM derivative (DHPM II). The results have shown that the (±)2,6-methano-4-thioxo-3,4,5,6-tetrahydro-2H-[1,3,5] benzoxadiazocines (DHPM I) and (±)2,6-methano-4-oxo-3,4,5,6-tetrahydro-2H-[1,3,5] benzoxadiazocines (DHPM II) belong to the monoclinic and triclinic systems, respectively, and their crystal structures are stabilized by N–H⋯O, O–H⋯O and N–H⋯S interactions. The DHPM derivatives established hydrogen bond interactions with the oxyanion-stabilizing residues (Gly-434/Ala-435) beyond the Thr-217, Phe-394 and Ile-216 in the biotin pocket. The predicted MoB of the DHPM derivatives (21R, 24S, 22R) configuration showed that its phenyl moiety was positioned on the interface between the biotin and propionyl-CoA pockets, suggesting a possible blockade of both subsites. Additionally, the hydrogen bonds involving the O-bridged phenyl ring of the DHPM derivatives (21S, 24R, 22S) configuration with Gly434 in the oxyanion-stabilizing region placed its phenyl moiety in the bottom of the biotin pocket establishing hydrophobic interactions with Leu164, Tyr167, Val459 and Ala155. These results indicate the DHPM derivatives as potential AccD5 inhibitors and promising starting points for future optimizations. Although the overlap of DHPM I and DHPM II did not present significant differences, the exchange of a sulfur atom for an oxygen atom increased the predicted biological potential.

Acknowledgements

The authors are grateful to the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), the Fundação de Amparo à Pesquisa do Estado de Goiás (FAPEG) and Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico (FUNCAP) for financial support. Also, the authors are grateful to the High Performance Computing Center of the Universidade Estadual de Goiás (UEG).

  1. Conflict of interest: The authors declare that there is no conflict of interest.

References

[1] M. Jackson, The mycobacterial cell envelope – lipids. Cold Spring Harb. Perspect. Med.2014, 4, a021105.10.1101/cshperspect.a021105Search in Google Scholar

[2] F. G. Winder, Mode of action of the antimycobacterial agents and associated aspects of the molecular biology of the mycobacteria. in The Biology of the Mycobacteria (Eds. C. Ratledge and J. Standford) Elsevier, Vol. 1, Academic Press, London, United Kingdom, p. 354, 1982.Search in Google Scholar

[3] L. Deng, K. Mikusová, K. G. Robuck, M. Scherman, P. J. Brennan, M. R. McNeil, Recognition of multiple effects of ethambutol on metabolism of mycobacterial cell envelope. Antimicrob. Agents Chemother.1995, 39, 694.10.1128/AAC.39.3.694Search in Google Scholar

[4] A. Wright, M. Zignol, A. Van Deun, D. Falzon, S. R. Gerdes, K. Feldman, S. Hoffner, F. Drobniewski, L. Barrera, D. van Soolingen, F. Boulabhal, C. N. Paramasivan, K. M. Kam, S. Mitarai, P. Nunn, M. Raviglione, Global Project on Anti-Tuberculosis Drug Resistance Surveillance, Epidemiology of antituberculosis drug resistance 2002–07: an updated analysis of the Global Project on Anti-Tuberculosis Drug Resistance Surveillance. Lancet2009, 373, 1861.10.1016/S0140-6736(09)60331-7Search in Google Scholar

[5] M. Zignol, A. S. Dean, D. Falzon, W. van Gemert, A. Wright, A. van Deun, F. Portaels, A. Laszlo, M. A. Espinal, A. Pablos-Méndez, A. Bloom, M. A. Aziz, K. Weyer, E. Jaramillo, P. Nunn, K. Floyd, M. C. Raviglione, Twenty years of global surveillance of antituberculosis-drug resistance. N. Engl. J. Med.2016, 375, 1081.10.1056/NEJMsr1512438Search in Google Scholar PubMed

[6] L. Favrot, D. R. Ronning, Targeting the mycobacterial envelope for tuberculosis drug development. Expert Rev. Anti Infect. Ther.2012, 10, 1023.10.1586/eri.12.91Search in Google Scholar PubMed PubMed Central

[7] T.-W. Lin, M. M. Melgar, D. Kurth, S. J. Swamidass, J. Purdon, T. Tseng, G. Gago, P. Baldi, H. Gramajo, S. C. Tsai, Structure-based inhibitor design of AccD5, an essential acyl-CoA carboxylase carboxyltransferase domain of Mycobacterium tuberculosis. Proc. Natl. Acad. Sci.2006, 103, 3072.10.1073/pnas.0510580103Search in Google Scholar PubMed PubMed Central

[8] M. Jackson, G. Stadthagen, B. Gicquel, Long-chain multiple methyl-branched fatty acid-containing lipids of Mycobacterium tuberculosis: biosynthesis, transport, regulation and biological activities. Tuberculosis2007, 87, 78.10.1016/j.tube.2006.05.003Search in Google Scholar PubMed

[9] J. Lombard, D. Moreira, Early evolution of the biotin-dependent carboxylase family. BMC Evol. Biol.2011, 11, 232.10.1186/1471-2148-11-232Search in Google Scholar PubMed PubMed Central

[10] L. Diacovich, D. L. Mitchell, H. Pham, G. Gago, M. M. Melgar, C. Khosla, H. Gramajo, S. C. Tsai, Crystal structure of the beta-subunit of acyl-CoA carboxylase: structure-based engineering of substrate specificity. Biochemistry2004, 43, 14027.10.1021/bi049065vSearch in Google Scholar PubMed

[11] M. M. Karelson, A. R. Katritzky, M. Szafran, M. C. Zerner, Quantitative predictions of tautomeric equilibria for 2-, 3-, and 4-substituted pyridines in both the gas phase and aqueous solution: combination of AM1 with reaction field theory. J. Org. Chem.1989, 54, 6030.10.1021/jo00287a012Search in Google Scholar

[12] B. S. Holla, B. S. Rao, B. K. Sarojini, P. M. Akberali, One pot synthesis of thiazolodihydropyrimidinones and evaluation of their anticancer activity. Eur. J. Med. Chem.2004, 39, 777.10.1016/j.ejmech.2004.06.001Search in Google Scholar

[13] N. Y. Fu, Y. F. Yuan, Z. Cao, S.-W. Wang, J.-T. Wang, C. Peppe, Indium(III) bromide-catalyzed preparation of dihydropyrimidinones: improved protocol conditions for the Biginelli reaction. Tetrahedron2002, 58, 4801.10.1016/S0040-4020(02)00455-6Search in Google Scholar

[14] M. Yar, M. Bajda, L. Shahzadi, S. A. Shahzad, M. Ahmed, M. Ashraf, U. Alam, I. U. Khan, A. F. Khan, Novel synthesis of dihydropyrimidines for α-glucosidase inhibition to treat type 2 diabetes: in vitro biological evaluation and in silico docking. Bioorg. Chem.2014, 54, 96.10.1016/j.bioorg.2014.05.003Search in Google Scholar

[15] X. Jing, Z. Li, X. Pan, Q. Wang, PdO-catalyzed synthesis of tricyclic compounds using Biginelli-like reaction. Synth. Commun.2009, 39, 3796.10.1080/00397910902838896Search in Google Scholar

[16] Q. Liu, J. Xu, F. Teng, A. Chen, N. Pan, W. Zhang, Studies on the Biginelli reactions of salicylaldehyde and 2-hydroxy-l-naphthaldehyde. J. Heterocycl. Chem.2014, 51, 741.10.1002/jhet.1785Search in Google Scholar

[17] R. Kaur, S. Chaudhary, K. Kumar, M. K. Gupta, R. K. Rawal, Recent synthetic and medicinal perspectives of dihydropyrimidinones: a review. Eur. J. Med. Chem.2017, 132, 108.10.1016/j.ejmech.2017.03.025Search in Google Scholar

[18] C. O. Kappe, The Biginelli reaction. in Multicomponent Reactions, (Eds. J. Zhu and H. Bienayme) Wiley-VCH, Weinheim, p. 95, 2005.10.1002/3527605118.ch4Search in Google Scholar

[19] C. O. Kappe, W. M. F. Fabian, Conformational analysis of 4-aryl-dihydropyrimidine calcium channel modulators. A comparison of ab lnitio, semiempirical and X-ray crystallographic studies. Tetrahedron1997, 53, 2803.10.1016/S0040-4020(97)00022-7Search in Google Scholar

[20] V. Kettmann, J. Světlik, Methyl 9-methyl-11-thioxo-8-oxa-10,12-diazatricyclo[7.3.1.0 2,7]trideca-2,4,6-triene-13-carboxylate. Acta Crystallogr. Sect. C Cryst. Struct. Commun.1996, 52, 1496.10.1107/S0108270195008924Search in Google Scholar

[21] V. F. Sedova, V. P. Krivopalov, Y. V. Gatilov, O. P. Shkurko, 2-Methyl-11-nitro-5,6-dihydro-2H-2,6-methano- 1,3,5-benzoxadiazocin-4(3H)- one: Synthesis, crystal structure and tautomerism in dipolar aprotic solvents. Mendeleev. Commun.2013, 23, 176.10.1016/j.mencom.2013.05.020Search in Google Scholar

[22] M. M. Kurbanova, A. M. Maharramov, A. B. Novruzova, A. V. Gurbanov, S. W. Ng, (2011) 1-(9-Methyl-11-sulfanylidene-8-oxa-10,12-diazatricyclo[7.3.1.0 2,7]trideca-2,4,6-trien-13-yl)ethanone. Acta Crystallogr. Sect. E Struct. Rep. Online2011, 67, 920.10.1107/S1600536811013699Search in Google Scholar

[23] L. M. Ramos, B. C. Guido, C. C. Nobrega, J. R. Corrêa, R. G. Silva, H. C. de Oliveira, A. F. Gomes, F. C. Gozzo, B. A. Neto, The biginelli reaction with an imidazolium-tagged recyclable iron catalyst: Kinetics, mechanism, and antitumoral activity. Chem. – A Eur. J.2013, 19, 4156.10.1002/chem.201204314Search in Google Scholar PubMed

[24] Bruker, SAINT, version 8.34A. Bruker AXS Inc., Madison, Wiscosin, USA, 2012.Search in Google Scholar

[25] H. Puschmann, L. J. Bourhis, O. V. Dolomanov, R. J. Gildea, A. Q. Howard, Olex2 – a complete package for molecular crystallography. Acta Crystallogr. Sect. A: Found. Crystallogr.2011, 67, C593.10.1107/S0108767311084996Search in Google Scholar

[26] G. M. Sheldrick, Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem.2015, 71, 3.10.1107/S2053229614024218Search in Google Scholar PubMed PubMed Central

[27] G. M. Sheldrick, A short history of SHELX. Acta Crystallogr. Sect. A Found. Crystallogr.2008, 64, 112.10.1107/S0108767307043930Search in Google Scholar PubMed

[28] C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler, J. van de Streek, Mercury: visualization and analysis of crystal structures. J. Appl. Crystallogr.2006, 39, 453.10.1107/S002188980600731XSearch in Google Scholar

[29] S. K. Wolff, D. J. Grimwood, J. J. McKinnon, M. J. Turner, D. Jayatilaka, M. A. Spackman, Crystal Explorer 3.0. University of Western Australia, Perth, 2012.Search in Google Scholar

[30] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 09, Revision A.02. Gaussian Inc., Wallingford CT 34, 2009. doi: 10.1159/000348293. Available at: https://gaussian.com/citation/.10.1159/000348293Search in Google Scholar

[31] Y. Zhao, D. G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc.2008, 120, 215.10.1007/s00214-007-0310-xSearch in Google Scholar

[32] R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys.1980, 72, 650.10.1063/1.438955Search in Google Scholar

[33] A. D. McLean, G. S. Chandler, Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11-18. J. Chem. Phys.1980, 72, 5639.10.1063/1.438980Search in Google Scholar

[34] E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, T. E. Ferrin, UCSF Chimera? A visualization system for exploratory research and analysis. J. Comput. Chem.2004, 25, 1605.10.1002/jcc.20084Search in Google Scholar PubMed

[35] J. A. Maier, C. Martinez, K. Kasavajhala, L. Wickstrom, K. E. Hauser, C. Simmerling, ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theor. Comput.2015, 11, 3696.10.1021/acs.jctc.5b00255Search in Google Scholar PubMed PubMed Central

[36] O. Trott, A. J. Olson, AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem.2010, 31, 455.10.1002/jcc.21334Search in Google Scholar PubMed PubMed Central

[37] S. K. Nayak, K. N. Venugopala, D. Chopra, T. N. G. Row, Insights into conformational and packing features in a series of aryl substituted ethyl-6-methyl-4-phenyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylates. CrystEngComm2011, 13, 591.10.1039/C0CE00045KSearch in Google Scholar

[38] G. R. Desiraju, Supramolecular synthons in crystal engineering – a new organic synthesis. Angew. Chem. Int. Ed. Engl.1995, 34, 2311.10.1002/anie.199523111Search in Google Scholar

Received: 2019-05-17
Accepted: 2019-08-25
Published Online: 2019-09-27
Published in Print: 2019-10-25

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zkri-2019-0032/html
Scroll to top button