Home Third-order nonlinear optical properties of three chlorinated thienyl chalcones derivatives: synthesis, structural determination and Hirshfeld surface analysis
Article
Licensed
Unlicensed Requires Authentication

Third-order nonlinear optical properties of three chlorinated thienyl chalcones derivatives: synthesis, structural determination and Hirshfeld surface analysis

  • Weng Zhun Ng , Qin Ai Wong , Tze Shyang Chia , C. S. Chidan Kumar , Huey Chong Kwong EMAIL logo , Ching Kheng Quah EMAIL logo , Yip-Foo Win , Shivaraj R. Maidur and Parutagouda Shankaragouda Patil
Published/Copyright: September 27, 2019

Abstract

Three chlorinated theinyl chalcone derivatives, namely (E)-1-(5-chlorothiophen-2-yl)-3-(4-(methylthio)phenyl)prop-2-en-1-one (I), (E)-1-(5-chlorothiophen-2-yl)-3-(4-(dimethylamino)phenyl)prop-2-en-1-one (II) and (E)-1-(5-chlorothiophen-2-yl)-3-(2,3-dihydrobenzofuran-5-yl)prop-2-en-1-one (III), were synthesized and their crystal structures were determined by single-crystal X-ray diffraction analysis. Compounds I, II and III crystallize in the monoclinic space groups P 21/c (centrosymmetric), P 21/n (centrosymmetric) and Pc (non-centrosymmetric), respectively. In all three compounds, the molecules are in a relatively planar conformation and adopt a trans configuration with respect to the C=C double bond. The crystal packings are stabilized by weak hydrogen-bonds, π · · · π, C–H · · · π and C–Cl · · · π interactions. The intermolecular contacts and lattice energies were further analyzed by Hirshfeld surface analysis. The third-order nonlinear optical properties of these chalcone derivatives were investigated using the single beam Z-scan technique with a 5 mW continuous wave diode laser operating at 635 nm, where compound I showed the highest potential for optical application with its exclusive nonlinear refractive index and nonlinear susceptibility.

Acknowledgements

The authors thank Malaysian Government and Universiti Sains Malaysia for Research University Individual Grant (RUI) (1001/PFIZIK/8011080). Dr. P.S. Patil thanks Science and Engineering Research Board (SERB), Government of India, for Core Research Grant (EMR/2017/003632).

References

[1] W.-C. Chu, P.-Y. Bai, Z.-Q. Yang, D.-Y. Cui, Y.-G. Hua, Y. Yang, Q.-Q. Yang, E. Zhang, S. Qin, Synthesis and antibacterial evaluation of novel cationic chalcone derivatives possessing broad spectrum antibacterial activity. Eur. J. Med. Chem. 2018, 143, 905.10.1016/j.ejmech.2017.12.009Search in Google Scholar PubMed

[2] A. Modzelewska, C. Pettit, G. Achanta, N. E. Davidson, P. Huang, S. R. Khan, Anticancer activities of novel chalcone and bis-chalcone derivatives. Bioorgan. Med. Chem. 2006, 14, 3491.10.1016/j.bmc.2006.01.003Search in Google Scholar PubMed

[3] M. Debarshi Kar, B. Sanjay Kumar, A. Vivek, Chalcone derivatives: anti-inflammatory potential and molecular targets perspectives. Curr. Top. Med. Chem. 2017, 17, 3146.10.2174/1568026617666170914160446Search in Google Scholar PubMed

[4] K. L. Lahtchev, D. I. Batovska, S. P. Parushev, V. M. Ubiyvovk, A. A. Sibirny, Antifungal activity of chalcones: a mechanistic study using various yeast strains. Eur. J. Med. Chem. 2008, 43, 2220.10.1016/j.ejmech.2007.12.027Search in Google Scholar PubMed

[5] C. Gopi, V. G. Sastry, M. D. Dhanaraju, Synthesis and spectroscopic characterisation of novel bioactive molecule of 3-(2-substituted)-1H-indol-3-yl)-1-(thiophen-2yl)prop-2-en-1-one chalcone derivatives as effective anti-oxidant and anti-microbial agents. Beni-Suef. Univ. J. Basic Appl. Sci. 2016, 5, 236.10.1016/j.bjbas.2016.08.004Search in Google Scholar

[6] B. Ganapayya, A. Jayarama, R. Sankolli, V. R. Hathwar, S. M. Dharmaprakash, Synthesis, growth, and characterization of a new NLO material 3-(2,3-dimethoxyphenyl)-1-(pyridin-2-yl)prop-2-en-1-one. J. Mol. Struct. 2012, 1007, 175.10.1016/j.molstruc.2011.10.042Search in Google Scholar

[7] M. Albota, D. Beljonne, J.-L. Brédas, J. E. Ehrlich, J.-Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X.-L. Wu, C. Xu, Design of organic molecules with large two-photon absorption cross sections. Science1998, 281, 1653.10.1126/science.281.5383.1653Search in Google Scholar PubMed

[8] M. Nagasawa, S. Miyata, E. Hanamura, H. Nakanishi, H. Nishihara, H. Sasabe, O. Kamigaito, M. Kawamura, Nonlinear Optics (Ed. S. Miyata) Elsevier, Amsterdam, 1992.Search in Google Scholar

[9] D. R. Kanis, M. A. Ratner, T. J. Marks, Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects. Chem. Rev. 1994, 94, 195.10.1021/cr00025a007Search in Google Scholar

[10] S. P. Karna, Electronic and nonlinear optical materials: the role of theory and modeling. J. Phys. Chem. A. 2000, 104, 4671.10.1021/jp001296ySearch in Google Scholar

[11] C. S. Chidan Kumar, S. Raghavendra, T. S. Chia, S. Chandraju, S. M. Dharmaprakash, H.-K. Fun, C. K. Quah, Structure–property relation and third order nonlinear optical absorption study of a new organic crystal: 1-(3,4-dimethoxyphenyl)-3-(2-fluorophenyl) prop-2-en-1-one. Opt. Mater. 2015, 49, 279.10.1016/j.optmat.2015.09.026Search in Google Scholar

[12] H. C. Kwong, M. S. Rakesh, C. S. Chidan Kumar, R. Maidur Shivaraj, S. Patil Parutagouda, K. Quah Ching, Y.-F. Win, C. Parlak, S. Chandraju, Structure–property relation and third-order nonlinear optical studies of two new halogenated chalcones. Z. Kristallogr.2018, 233, 349.10.1515/zkri-2017-2098Search in Google Scholar

[13] J. Cosier, A. M. Glazer, A nitrogen-gas-stream cryostat for general X-ray diffraction studies. J. Appl. Crystallogr. 1986, 19, 105.10.1107/S0021889886089835Search in Google Scholar

[14] Bruker, APEX2, SAINT and SADABS. Bruker AXS Inc., Madison. WI, USA 2012.Search in Google Scholar

[15] G. Sheldrick, SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallogr. A.2015, 71, 3.10.1107/S2053273314026370Search in Google Scholar PubMed PubMed Central

[16] G. Sheldrick, Crystal structure refinement with SHELXL. Acta Crystallogr. C. 2015, 71, 3.10.1107/S2053229614024218Search in Google Scholar

[17] R. E. Rodriguez-Lugo, N. Urdaneta, B. Pribanic, V. R. Landaeta, The solid-state emissive chalcone (2E)-1-(5-chlorothiophen-2-yl)-3-[4-(dimethylamino)phenyl]prop-2-en-1-one. Acta Crystallogr. C.2015, 71, 783.10.1107/S2053229615014205Search in Google Scholar PubMed

[18] M. A. Spackman, D. Jayatilaka, Hirshfeld surface analysis. CrystEngComm. 2009, 11, 19.10.1039/B818330ASearch in Google Scholar

[19] M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, P. R. Spackman, D. Jayatilaka, M. A. Spackman, CrystalExplorer17. 2017, University of Western Australia. Available at: http://hirshfeldsurface.net.Search in Google Scholar

[20] M. A. Spackman, J. J. McKinnon, D. Jayatilaka, Electrostatic potentials mapped on Hirshfeld surfaces provide direct insight into intermolecular interactions in crystals. CrystEngComm. 2008, 10, 377.10.1039/b715227bSearch in Google Scholar

[21] S. P. Thomas, P. R. Spackman, D. Jayatilaka, M. A. Spackman, Accurate lattice energies for molecular crystals from experimental crystal structures. J. Chem. Theory Comput. 2018, 14, 1614.10.1021/acs.jctc.7b01200Search in Google Scholar PubMed

[22] M. Sheik-Bahae, A. A. Said, E. W. Van Stryland, High-sensitivity, single-beam n2 measurements. Opt. Lett. 1989, 14, 955.10.1364/OL.14.000955Search in Google Scholar

[23] M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, E. W. V. Stryland, Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Elect. 1990, 26, 760.10.1109/3.53394Search in Google Scholar

[24] S. Jeyaram, T. Geethakrishnan, Third-order nonlinear optical properties of acid green 25 dye by Z-scan method. Opt. Laser Technol. 2017, 89, 179.10.1016/j.optlastec.2016.10.006Search in Google Scholar

[25] M. A. Spackman, J. J. McKinnon, Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm. 2002, 4, 378.10.1039/B203191BSearch in Google Scholar

[26] Q. M. Ali, P. K. Palanisamy, Z-scan determination of the third-order optical nonlinearity of organic dye Nile Blue chloride. Mod. Phys. Lett. B. 2006, 20, 623.10.1142/S0217984906010779Search in Google Scholar

[27] S. R. Maidur, P. S. Patil, S. V. Rao, M. Shkir, S. M. Dharmaprakash, Experimental and computational studies on second-and third-order nonlinear optical properties of a novel D-π-A type chalcone derivative: 3-(4-methoxyphenyl)-1-(4-nitrophenyl) prop-2-en-1-one. Opt. Laser Technol. 2017, 97, 219.10.1016/j.optlastec.2017.07.003Search in Google Scholar

[28] K. Jamshidi-Ghaleh, S. Salmani, M. H. Majles Ara, Nonlinear responses and optical limiting behavior of fast green FCF dye under a low power CW He–Ne laser irradiation. Opt. Commun. 2007, 271, 5.10.1016/j.optcom.2006.10.037Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2019-0039).


Received: 2019-07-12
Accepted: 2019-09-12
Published Online: 2019-09-27
Published in Print: 2019-10-25

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zkri-2019-0039/html
Scroll to top button