Abstract
Single crystals of solid chlorine (Cl2) were synthesized at room temperature and high pressure (HP, P=1.45 GPa) in a diamond anvil cell (DAC). At these conditions Cl2 adapts the same structure as its corresponding low-temperature (LT) ambient pressure modification (T<172 K), as concluded from HP single crystal diffraction experiments. Namely, it crystallizes in an orthorhombic symmetry (Cmce spacegroup) with Cl2 molecules forming monolayers parallel to the bc plane and this structure is preserved up to at least 64 GPa. The pressure of 1.45 GPa is to be considered as a solidification point of liquid Cl2 at room temperature.
Acknowledgements
We acknowledge S. Bauchau, H. Mueller and L. Bourcet for technical assistance during DAC loading.
References
[1] W. H. Keesom, K. W. Taconis, On the crystal structure of chlorine. Physica1936, 3, 237.10.1016/S0031-8914(36)80226-2Suche in Google Scholar
[2] R. Collin, The crystal structure of solid chlorine. Acta Cryst.1952, 5, 431.10.1107/S0365110X52001295Suche in Google Scholar
[3] J. Donohue, S. H. Goodman, Interatomic distances in solid chlorine. Acta Cryst.1965, 18, 568.10.1107/S0365110X65001263Suche in Google Scholar
[4] E. D. Stevens, Experimental electron density distribution of molecular chlorine. Mol. Phys.1979, 37, 27.10.1080/00268977900100041Suche in Google Scholar
[5] B. M. Powell, K. M. Heal, B. H. Torrie, The temperature dependence of the crystal structures of the solid halogens, bromine and chlorine. Mol. Phys.1984, 53, 929.10.1080/00268978400102741Suche in Google Scholar
[6] E. F. Dusing, W. A Grosshans, W. B. Holzapfel, Equation of state of solid chlorine and bromine. J. Phys.1984, 8, 203.10.1051/jphyscol:1984837Suche in Google Scholar
[7] E. Burgos, C. S. Murthy, R. Righini, Crystal structure and lattice dynamics of chlorine The role of electrostatic and anisotropic atom-atom potentials. Mol. Phys.1982, 47, 1391.10.1080/00268978200101042Suche in Google Scholar
[8] P. M. Rodger, A. J. Stone, D. J. Tildesley, The intermolecular potential of chlorine. Mol. Phys.1988, 63, 173.10.1080/00268978800100151Suche in Google Scholar
[9] R. J. Wheatley, S. L. Price, A systematic intermolecular potential method applied to chlorine. Mol. Phys.1990, 71, 1381.10.1080/00268979000102551Suche in Google Scholar
[10] R. Bauer, O. Schütt, P. Pavone, W. Windl, D. Strauch, Static and dynamical properties of solid chlorine. Phys. Rev. B1995, 51, 210.10.1103/PhysRevB.51.210Suche in Google Scholar
[11] F. Siringo, G. Piccitto, R. Pucci, Metal-insulator transition of solid halogens under pressure. High Press. Res.1990, 3, 162.10.1080/08957959008246063Suche in Google Scholar
[12] Rigaku Corporation, Oxford, UK, CrysAlisPro Software system, version 1.171.39.46, 2018.Suche in Google Scholar
[13] P. I. Dorogokupets, A. Dewaele, Equations of state of MgO, Au, Pt, NaCl-B1, and NaCl-B2: Internally consistent high-temperature pressure scales. High Press. Res.2007, 27, 431.10.1080/08957950701659700Suche in Google Scholar
[14] A. Lazicki, A. Dewaele, P. Loubeyre, M. Mezouar, High-pressure–temperature phase diagram and the equation of state of beryllium. Phys. Rev. B2012, 86, 174118.10.1103/PhysRevB.86.174118Suche in Google Scholar
[15] G. M. Sheldrick, A short history of SHELX. Acta Cryst.2008, A64, 112.10.1107/S0108767307043930Suche in Google Scholar PubMed
[16] G. M. Sheldrick, SHELXT-Integrated space-group and crystal-structure determination. Acta Cryst.2015, C71, 3.10.1107/S2053273314026370Suche in Google Scholar PubMed PubMed Central
[17] Rigaku Corporation, Oxford, UK, SCALE3 ABSPACK program, version 1.0.11, 2018.Suche in Google Scholar
©2019 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Graphical Synopsis
- Inorganic Crystal Structures
- Density functional theory calculations of merohedric twinning in KLiSO4
- Low-temperature anharmonicity and symmetry breaking in the sodalite |Na8I2|[AlSiO4]6
- Crystal structure and in vitro antimicrobial activity studies of Robustic acid and other Alpinumisoflavones isolated from Millettia thonningii
- The symmetry origin of the austenite-cementite orientation relationships in steels
- Organic and Metalorganic Crystal Structures
- Structural features of uranyl acrylate complexes with s-, p-, and d-monovalent metals
- Challenging structure determination from powder diffraction data: two pharmaceutical salts and one cocrystal with Z′ = 2
- Synthesis of CdSe/ZnS@HPU-2 composites for highly sensitive and multicolor florescence response to Fe3+
- Letter
- Structure of solid chlorine at 1.45 GPa
Artikel in diesem Heft
- Frontmatter
- Graphical Synopsis
- Inorganic Crystal Structures
- Density functional theory calculations of merohedric twinning in KLiSO4
- Low-temperature anharmonicity and symmetry breaking in the sodalite |Na8I2|[AlSiO4]6
- Crystal structure and in vitro antimicrobial activity studies of Robustic acid and other Alpinumisoflavones isolated from Millettia thonningii
- The symmetry origin of the austenite-cementite orientation relationships in steels
- Organic and Metalorganic Crystal Structures
- Structural features of uranyl acrylate complexes with s-, p-, and d-monovalent metals
- Challenging structure determination from powder diffraction data: two pharmaceutical salts and one cocrystal with Z′ = 2
- Synthesis of CdSe/ZnS@HPU-2 composites for highly sensitive and multicolor florescence response to Fe3+
- Letter
- Structure of solid chlorine at 1.45 GPa