Startseite Density functional theory calculations of merohedric twinning in KLiSO4
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Density functional theory calculations of merohedric twinning in KLiSO4

  • Hans Grimmer EMAIL logo und Bernard Delley
Veröffentlicht/Copyright: 8. Dezember 2018

Abstract

Density functional theory (DFT) calculations have been performed on five models of periodic, polysynthetic twin interfaces in the ambient-temperature phase of KLiSO4, which has space group P63. The models represent the three merohedric twin laws (m||z, 2⊥z and 1̅) with boundary plane (1 0 1̅ 0), also with boundary plane (0 0 0 1) in case of m, and with boundary plane (1 2̅ 1 0) in case of 1̅. The models satisfy stoichiometry at the boundary plane and maintain the fourfold coordination of the Li and S atoms and the twofold coordination of the oxygen atoms. Relaxed lattice parameters and atomic positions were determined by DFT, using the DMol3 code with functional PBEsol. The energy difference between polysynthetic twin and single crystal per primitive cell of the twin is 0.0009 eV for m(0 0 0 1), 0.09 eV for 1̅(1 0 1̅ 0), 0.58 eV for m(1 0 1̅ 0) and 0.55 eV for 2(1 0 1̅ 0). In KLiSO4 crystals grown from aqueous solutions the first twin was frequently observed, similarly also the second twin in Cr-doped crystals, whereas the third twin appeared only rarely and the fourth was not observed. Not only for KLiSO4 but also for quartz, the energy of twins and the frequency of their occurrence are closely connected for crystals grown from aqueous solutions, whereas for the formation of transformation twins the availability of twin nuclei plays a major role.


Dedicated to: Prof. emerit. Theo Hahn, RWTH Aachen University, Germany († 12 Feb. 2016).


Acknowledgments

The authors are indebted to Prof. H. Klapper for proposing this investigation, for answering their questions and for a copy of Ref. [4].

References

[1] H. Klapper, Th. Hahn, S. J. Chung, Optical, pyroelectric and X-ray topographic studies of twin domains and twin boundaries in KLiSO4. Acta Cryst.1987, B43, 147, with Erratum on page 406 of the same volume.10.1107/S0108768187098148Suche in Google Scholar

[2] H. Klapper, H.-D. Jennissen, Chr. Scherf, Th. Hahn, X-ray topographic and polarisation-optical studies of the low-temperature phase transitions and domain structures of KLiSO4. Ferroelectrics2008, 376, 25.10.1080/00150190802440724Suche in Google Scholar

[3] Chr. Scherf, N. R. Ivanov, S. J. Chung, Th. Hahn, H. Klapper, High – temperature phase transitions and domain structures of KLiSO4: studied by polarisation-optics, X-ray topography and liquid-crystal surface decoration. Z. Kristallogr.2017, 232, 415.10.1515/zkri-2016-2030Suche in Google Scholar

[4] Chr. Scherf, Strukturelle Phasenübergänge und Zwillingsdomänen des Kaliumlithium-sulfats und verwandter Sulfate. Doctoral Thesis, RWTH Aachen, 2000. 286 pages, in German. Shaker Verlag, Aachen 2000, ISBN 3-8265-8258-6. http://publications.rwth-aachen.de/record/96444/files/Scherf_Christian.pdf.Suche in Google Scholar

[5] H. Schulz, U. Zucker, R. Frech, Crystal structure of KLiSO4 as a function of temperature. Acta Cryst.1985, B41, 21.10.1107/S0108768185001525Suche in Google Scholar

[6] J. F. Nye, Physical properties of crystals. Clarendon Press, Oxford 1985.Suche in Google Scholar

[7] B. Delley, From molecules to solids with the DMol3 approach. J. Chem. Phys.2000, 113, 7756.10.1063/1.1316015Suche in Google Scholar

[8] International Tables for Crystallography, Vol. A. Space-group symmetry, (Ed. M. I. Aroyo) 6th edition, International Union of Crystallography. John Wiley & Sons, Ltd, Chichester, UK, 2016.Suche in Google Scholar

[9] J. P. Perdew, Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev.1992, B45, 13244.10.1103/PhysRevB.45.13244Suche in Google Scholar

[10] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett.1996, 77, 3865.10.1103/PhysRevLett.77.3865Suche in Google Scholar

[11] J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, K. Burke, Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett.2008, 100, 136406, with Erratum in Phys. Rev. Lett.2009, 102, 039902.10.1103/PhysRevLett.100.136406Suche in Google Scholar

[12] J. Sun, A. Ruzsinszky, J. P. Perdew, Strongly constrained and appropriately normed semilocal density functional. Phys. Rev. Lett.2015, 115, 036402.10.1103/PhysRevLett.115.036402Suche in Google Scholar

[13] A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K. A. Persson, The materials project: a materials genome approach to accelerating materials innovation. APL Mater.2013, 1, 011002.10.1063/1.4812323Suche in Google Scholar

[14] M. A. Pimenta, Y. Luspin, G. Hauret, Brillouin light scattering in LiKSO4 between 20 and 80°C. Solid State Commun.1986, 59, 481.10.1016/0038-1098(86)90692-7Suche in Google Scholar

[15] H. Kabelka, G. Kuchler, Elastic stiffness constants and elastic relaxation around the first low temperature phase transition in LiKSO4. Ferroelectrics1988, 88, 93.10.1080/00150198808245157Suche in Google Scholar

[16] L. Godfrey, J. Philip, Ultrasonic measurement of the elastic constants of LiKSO4 between 300 and 370 K. Solid State Commun.1996, 97, 635.10.1016/0038-1098(95)00577-3Suche in Google Scholar

[17] F. Willis, R. G. Leisure, T. Kanashiro, Temperature dependence of the elastic constants of LiKSO4 through a first-order structural phase transition. Phys. Rev.1996, B54, 9077.10.1103/PhysRevB.54.9077Suche in Google Scholar

[18] Th. Hahn, H. Klapper, Twinning of crystals. Chapter 3.3, in International Tables for Crystallography, Vol. D. Physical Properties of Crystals, (Ed. A. Authier) Second Edition, International Union of Crystallography. John Wiley & Sons, Ltd, Chichester, UK, 2014.10.1107/97809553602060000917Suche in Google Scholar

[19] H. Grimmer, B. Delley, Density functional calculations of polysynthetic Brazil twinning in α-quartz. Acta Cryst.2012, A68, 359, with Erratum in Acta Cryst.2014, A70, 682.10.1107/S0108767312008756Suche in Google Scholar PubMed

[20] B. Delley, H. Grimmer, Density-functional calculations of Esterel twinning in quartz. Phys. Rev.2007, B76, 224106.10.1103/PhysRevB.76.224106Suche in Google Scholar

[21] C. Frondel, The system of mineralogy, Vol. III. Silica Minerals, 7th edition. John Wiley & Sons, Inc., New York and London, 1962.Suche in Google Scholar

Received: 2018-09-03
Accepted: 2018-10-22
Published Online: 2018-12-08
Published in Print: 2019-04-24

©2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zkri-2018-2126/html
Button zum nach oben scrollen