Abstract
The connection between austenite/cementite orientation relationships and crystal structure of both phases has been established. The nucleus formation mechanism at the mutual transformation of austenite and cementite structures has been proposed. Mechanism is based on the interpretation of the considered structures as crystallographic tiling onto triangulated polyhedra, and the said tiling can be transformed by diagonal flipping in a rhombus consisting of two adjacent triangular faces. The sequence of diagonal flipping in the fragment of the initial crystal determines the orientation of the fragment of the final crystal relative to the initial crystal. In case of the mutual austenite/cementite transformation the mutual orientation of the initial and final fragments is coinciding to the experimentally observed in steels Thomson-Howell orientation relationships:
The observed orientation relationship between FCC austenite and cementite is determined by crystallographic group-subgroup relationship between transformation participants, and non-crystallographic symmetry which is determining the transformation of triangulated clusters of transformation participants.
Funding source: Russian Foundation for Basic Research
Award Identifier / Grant number: 19-02-00085
Funding statement: The authors are grateful to professor Ya. L. Linetsky for valuable discussions. This research was fulfilled with financial support from Russian Foundation for Basic Research (RFBR), grant # 19-02-00085.
References
[1] S. W. Thomson, P. R. Howell, A preliminary comparison of two apparently diverse cementite/austenite orientation relationships. Scripta Metallurgica1988, 22, 229.10.1016/S0036-9748(88)80339-9Search in Google Scholar
[2] I. V. Isaichev, Cementite orientation in the tempered carbon steel. Zhur. Tekhn. Fiziki1947, 17, 835.Search in Google Scholar
[3] Y. A. Bagaryatski, Possible mechanism of the martensite decomposition. Dokl. Akad. Nauk SSSR1950, 73, 1161.Search in Google Scholar
[4] C. M. Wayman, Introduction to the Crystallography of Martensitic Transformations, Macmillan, New York, 1964.Search in Google Scholar
[5] E. J. Fasiska, G. A. Jeffrey, On the cementite structure. Acta Crystallogr.1965, 19, 463.10.1107/S0365110X65003602Search in Google Scholar
[6] B. N. Delaunay, N. P. Dolbilin, M. I. Stogrin, R. V. Galiuilin, A local criterion for regularity of a system of points. Sov. Math. Dokl.1976, 17, 319.Search in Google Scholar
[7] N. P. Dolbilin, Delaunay sets with congruent clusters. Struct. Chem.2016, 27, 1725.10.1007/s11224-016-0832-8Search in Google Scholar
[8] A. Talis, V. Kraposhin, Finite noncrystallographic groups, 11-vertex equiedged triangulated clusters, and polymorphic transformations in metals. Acta Crystallogr. A2014, 70, 616.10.1107/S2053273314015733Search in Google Scholar
[9] V. S. Kraposhin, M. N. Pankova, A. L. Talis, Yu. A. Freiman, An application of a polytope (4D-polyhedron) concept for the description of polymorphic transitions: iron martensite and solid oxygen. J. Phys. IV. France2003, 112, 119.10.1051/jp4:2003847Search in Google Scholar
[10] V. Kraposhin, V. Schastlivtsev, I. Jakovleva, A. Talis, New model for carbon distribution in austenite and steel transformation products: materials today. Proceedings2015, 2S, S557.10.1016/j.matpr.2015.07.346Search in Google Scholar
[11] V. Kraposhin, I. Jakovleva, L. Karkina, G. Nuzhny, T. Zubkova, A. Talis, Microtwinning as a common mechanism for the martensitic and pearlitic transformations. J. Alloys Comp.2013, 577(Suppl. 1), S30.10.1016/j.jallcom.2011.10.102Search in Google Scholar
[12] S. Yu. Kondrat’ev, V. S. Kraposhin, G. P. Anastasiadi, A. L. Talis, Experimental observation and crystallographic description of M7C3 carbide transformation in Fe–Cr–Ni–C HP type alloy. Acta Mater.2015, 100, 275.10.1016/j.actamat.2015.08.056Search in Google Scholar
[13] A. L. Talis, V. S. Kraposhin, S. Yu. Kondrat’ev, V. I. Nikolaichik, E. V. Svyatysheva, A. A. Everstov, Non-crystallographic symmetry of liquid metal, flat crystallographic faults and polymorph transformation of the M7C3 carbide. Acta Cryst. A2017, 73, 209.10.1107/S2053273317000936Search in Google Scholar PubMed
[14] A. I. Bobenko, P. Schröder, J. M. Sullivan, G. M. Ziegler, Discrete differential geometry. Birkhäuser Verlag AG, 2008. ISBN 978-3-7643-8620–7.10.1007/978-3-7643-8621-4Search in Google Scholar
[15] O. D. Friedrichs, A. W. M. Dress, D. H. Huson, J. Klinowski, A. L. Mackay, Systematic enumeration of crystalline networks. Nature1999, 400, 644.10.1038/23210Search in Google Scholar
[16] K. Schubert, Kristallstrukturen zweikomponentiger, Phasen, Springer Verlag, 1964. Berlin/Goettingen/Heidelberg, 1964.10.1007/978-3-642-94904-3Search in Google Scholar
[17] International Tables for Crystallography (2006), V.A1, Maximal subgroups of space group 62.10.1107/97809553602060000509Search in Google Scholar
[18] B. G. Hyde, S. Andersson, M. Bakker, C. M. Plug, M. O’Keefe, The (twin) composition plane as an extended defect and structure-building entity. Prog. Solid State Chem.1979, 12, 273.10.1016/0079-6786(79)90002-5Search in Google Scholar
[19] X. Zhang, T. Hickel, J. Rogal, S. Fähler, R. Drautz, J. Neugebauer, Structural transformations among austenite, ferrite and cementite in Fe–C alloys: a unified theory based on ab initio simulations. Acta Mater.2015, 99, 281.10.1016/j.actamat.2015.07.075Search in Google Scholar
[20] W. Pitsch, Der Orientierungszusammenhang zwischen Zementit und Austenit. Acta Met.1962, 10, 897.10.1016/0001-6160(62)90108-6Search in Google Scholar
[21] W. B. Pearson, A Handbook of Lattice Spacing and Structures of Metals and Alloys, Pergamon Press, London, New York, Paris, Los Angeles, 1958.10.1063/1.3062734Search in Google Scholar
©2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Graphical Synopsis
- Inorganic Crystal Structures
- Density functional theory calculations of merohedric twinning in KLiSO4
- Low-temperature anharmonicity and symmetry breaking in the sodalite |Na8I2|[AlSiO4]6
- Crystal structure and in vitro antimicrobial activity studies of Robustic acid and other Alpinumisoflavones isolated from Millettia thonningii
- The symmetry origin of the austenite-cementite orientation relationships in steels
- Organic and Metalorganic Crystal Structures
- Structural features of uranyl acrylate complexes with s-, p-, and d-monovalent metals
- Challenging structure determination from powder diffraction data: two pharmaceutical salts and one cocrystal with Z′ = 2
- Synthesis of CdSe/ZnS@HPU-2 composites for highly sensitive and multicolor florescence response to Fe3+
- Letter
- Structure of solid chlorine at 1.45 GPa
Articles in the same Issue
- Frontmatter
- Graphical Synopsis
- Inorganic Crystal Structures
- Density functional theory calculations of merohedric twinning in KLiSO4
- Low-temperature anharmonicity and symmetry breaking in the sodalite |Na8I2|[AlSiO4]6
- Crystal structure and in vitro antimicrobial activity studies of Robustic acid and other Alpinumisoflavones isolated from Millettia thonningii
- The symmetry origin of the austenite-cementite orientation relationships in steels
- Organic and Metalorganic Crystal Structures
- Structural features of uranyl acrylate complexes with s-, p-, and d-monovalent metals
- Challenging structure determination from powder diffraction data: two pharmaceutical salts and one cocrystal with Z′ = 2
- Synthesis of CdSe/ZnS@HPU-2 composites for highly sensitive and multicolor florescence response to Fe3+
- Letter
- Structure of solid chlorine at 1.45 GPa