Startseite Challenging structure determination from powder diffraction data: two pharmaceutical salts and one cocrystal with Z′ = 2
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Challenging structure determination from powder diffraction data: two pharmaceutical salts and one cocrystal with Z′ = 2

  • Carina Schlesinger , Michael Bolte und Martin U. Schmidt EMAIL logo
Veröffentlicht/Copyright: 15. November 2018

Abstract

Structure solution of molecular crystals from powder diffraction data by real-space methods becomes challenging when the total number of degrees of freedom (DoF) for molecular position, orientation and intramolecular torsions exceeds a value of 20. Here we describe the structure determination from powder diffraction data of three pharmaceutical salts or cocrystals, each with four molecules per asymmetric unit on general position: Lamivudine camphorsulfonate (1, P 21, Z=4, Z′=2; 31 DoF), Theophylline benzamide (2, P 41, Z=8, Z′=2; 23 DoF) and Aminoglutethimide camphorsulfonate hemihydrate [3, P 21, Z=4, Z′=2; 31 DoF (if the H2O molecule is ignored)]. In the salts 1 and 3 the cations and anions have two intramolecular DoF each. The molecules in the cocrystal 2 are rigid. The structures of 1 and 2 could be solved without major problems by DASH using simulated annealing. For compound 3, indexing, space group determination and Pawley fit proceeded without problems, but the structure could not be solved by the real-space method, despite extensive trials. By chance, a single crystal of 3 was obtained and the structure was determined by single-crystal X-ray diffraction. A post-analysis revealed that the failure of the real-space method could neither be explained by common sources of error such as incorrect indexing, wrong space group, phase impurities, preferred orientation, spottiness or wrong assumptions on the molecular geometry or other user errors, nor by the real-space method itself. Finally, is turned out that the structure solution failed because of problems in the extraction of the integrated reflection intensities in the Pawley fit. With suitable extracted reflection intensities the structure of 3 could be determined in a routine way.

Acknowledgements

The authors thank Jacco van de Streek (Avant-garde Materials Simulation, Merzhausen) for finally solving structure 3 from powder diffraction data and helpful discussions, Franziska Fischer (formerly at Bundesanstalt für Materialforschung, Berlin) for indexing, structure solution and Rietveld refinement of compound 2. Silke D. Gumbert, Lukas Tapmeyer and Isolda M. Stais are acknowledged for the crystallisation and Edith Alig (all of them Goethe University, Frankfurt) for recording the X-ray powder patterns of 1 and 3. The authors thank Christoph Saal (Merck KGaA, Darmstadt) for providing the starting materials for 1 and 3. Carina Schlesinger thanks the Fond der Chemischen Industrie for a generous scholarship.

References

[1] W. I. F. David, Powder diffraction: least-squares and beyond. J. Res. Natl. Inst. Stand. Technol.2004, 109, 107.10.6028/jres.109.008Suche in Google Scholar

[2] W. I. F. David, K. Shankland, Structure determination from powder diffraction data. Acta Crystallogr.2008, A64, 52.10.1093/acprof:oso/9780199205530.001.0001Suche in Google Scholar

[3] M. U. Schmidt, M. Ermrich, R. E. Dinnebier, Determination of the structure of the violet pigment C22H12Cl2N6O4 from a non-indexed X-ray powder diagram. Acta Crystallogr.2005, B61, 37.10.1107/S010876810402693XSuche in Google Scholar

[4] E. F. Paulus, F. J. J. Leusen, M. U. Schmidt, Crystal structures of quinacridones. CrystEngComm.2007, 9, 131.10.1039/B613059CSuche in Google Scholar

[5] S. Habermehl, P. Mörschel, P. Eisenbrandt, S. M. Hammer, M. U. Schmidt, Structure determination from powder data without prior indexing, using a similarity measure based on cross-correlation functions. Acta Crystallogr.2014, B70, 347.10.1107/S2052520613033994Suche in Google Scholar

[6] W. I. F. David, K. Shankland, L. B. McCusker, C. Bärlocher, Structure determination from powder diffraction data. International Union of Crystallography Monographs on Crystallography 13, Oxford Science Publications, Oxford, England, 2006.10.1093/acprof:oso/9780199205530.001.0001Suche in Google Scholar

[7] K. D. M. Harris, M. Tremayne, Crystal structure determination from powder diffraction data. Chem. Mater.1996, 8, 2554.10.1021/cm960218dSuche in Google Scholar

[8] K. D. M. Harris, M. Tremayne, B. M. Kariuki, Contemporary advances in the use of powder X-ray diffraction for structure determination. Angew. Chem. Int. Ed.2001, 40, 1626.10.1002/1521-3773(20010504)40:9<1626::AID-ANIE16260>3.0.CO;2-7Suche in Google Scholar

[9] R. Černý, V. Favre-Nicolin, Direct space methods of structure determination from powder diffraction: principles, guidelines and perspectives. Z. Kristallogr.2007, 222, 105.10.1524/zkri.2007.222.3-4.105Suche in Google Scholar

[10] P. Fernandes, K. Shankland, A. J. Florence, N. Shankland, A. Johnston, Solving molecular crystal structures from X-ray powder diffraction data: the challenges posed by gamma-carbamazepine and chlorothiazide N,N-dimethylformamide (1/2) solvate. J. Pharm. Sci.2007, 96, 1192.10.1002/jps.20942Suche in Google Scholar

[11] A. J. Florence, N. Shankland, K. Shankland, W. I. F. David, E. Pidcock, X. Xu, A. Johnston, A. R. Kennedy, P. J. Cox, J. S. O. Evans, G. Steele, S. D. Cosgrove, C. S. Frampton, Solving molecular crystal structures from laboratory X-ray powder diffraction data with DASH: the state of the art and challenges. J. Appl. Crystallogr.2005, 38, 249.10.1107/S0021889804032662Suche in Google Scholar

[12] S. O. Nilsson Lill, C. M. Widdifield, A. Pettersen, A. Svensk Ankarberg, M. Lindkvist, P. Aldred, S. Gracin, N. Shankland, K. Shankland, S. Schantz, L. Emsley, Elucidating an amorphous form stabilization mechanism for tenapanor hydrochloride: crystal structure analysis using X-ray diffraction, NMR crystallography, and molecular modeling. Mol. Pharmaceutics2018, 15, 1476.10.1021/acs.molpharmaceut.7b01047Suche in Google Scholar

[13] Y. Benhamou, E. Dohin, F. Lunel-Fabiani, T. Poynard, J. M. Huraux, C. Katlama, P. Opolon, M. Gentilini, Efficacy of lamivudine on replication of hepatitis B virus in HIV-infected patients. Lancet1995, 345, 396.10.1016/S0140-6736(95)90388-7Suche in Google Scholar

[14] K. E. Gale, Treatment of advanced breast cancer with Aminoglutethimide: a 14-year experience. Cancer Res. (Suppl.)1982, 42, 3389s.Suche in Google Scholar

[15] C. Schlesinger, L. Tapmeyer, S. D. Gumbert, D. Prill, M. Bolte, M. U. Schmidt, C. Saal, Absolute configuration of pharmaceutical research compounds determined by X-ray powder diffraction. Angew. Chem.2018, 130, 9289; Angew. Chem. Int. Ed.2018, 57, 9150.10.1002/anie.201713168Suche in Google Scholar PubMed

[16] L. Hendeles, M. Weinberger, Theophylline. A “state of the art” review. Pharmacotherapy1983, 3, 2.10.1002/j.1875-9114.1983.tb04531.xSuche in Google Scholar PubMed

[17] F. Fischer, M. U. Schmidt, S. Greisera, F. Emmerling, The challenging case of the theophylline-benzamide cocrystal. Acta Crystallogr.2016, C72, 217.10.1107/S2053229616002643Suche in Google Scholar PubMed

[18] Stoe & Cie: WinXPow (Computer Software), Darmstadt, 2005.Suche in Google Scholar

[19] A. Boultif, D. Louër, Indexing of powder diffraction patterns for low-symmetry lattices by the successive dichotomy method. J. Appl. Crystallogr.1991, 24, 987.10.1107/S0021889891006441Suche in Google Scholar

[20] W. I. F. David, K. Shankland, J. van de Streek, E. Pidcock, W. D. S. Motherwell, J. C. Cole, DASH: a program for crystal structure determination from powder diffraction data. J. Appl. Crystallogr.2006, 39, 910.10.1107/S0021889806042117Suche in Google Scholar

[21] E. A. Kabova, J. C. Cole, O. Korb, M. López-Ibánez, A. C. Williams, K. Shankland, Improved performance of crystal structure solution from powder diffraction data through parameter tuning of a simulated annealing algorithm. J. Appl. Crystallogr.2017, 50, 1411.10.1107/S1600576717012602Suche in Google Scholar

[22] C. R. Groom, I. J. Bruno, M. P. Lightfood, S. C. Ward, The Cambridge structural database. Acta Crystallogr.2016, B72, 171.10.1016/B978-0-12-409547-2.02529-4Suche in Google Scholar

[23] H. M. Rietveld, A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr.1969, 2, 65.10.1107/S0021889869006558Suche in Google Scholar

[24] R. A. Young, The Rietveld Method, International Union of Crystallography and Oxford Science Publications,Oxford Science Publication, Oxford, England, 1995.Suche in Google Scholar

[25] A. A. Coelho, TOPAS and TOPAS-Academic: an optimization program integrating computer algebra and crystallographic objects written in C++. J. Appl. Crystallogr.2018, 51, 210.10.1107/S1600576718000183Suche in Google Scholar

[26] G. S. Pawley, Unit-cell refinement from powder diffraction scan. J. Appl. Crystallogr.1981, 14, 357.10.1107/S0021889881009618Suche in Google Scholar

[27] Stoe & Cie, X-AREA. Diffractometer control program system. Stoe & Cie, Darmstadt, Germany, 2002.Suche in Google Scholar

[28] G. M. Sheldrick, Crystal structure refinement with SHELXL. Acta Crystallogr.2008, A64, 112.10.1107/S0108767307043930Suche in Google Scholar PubMed

[29] S. Parsons, H. D. Flack, T. Wagner, Absolute structure determination using CRYSTALS. Acta Crystallogr.2013, B69, 249.10.1107/S2052519213010014Suche in Google Scholar

[30] D. W. M. Hofmann, Fast estimation of crystal densities. Acta Crystallogr.2002, B58, 489.10.1107/S0108768101021814Suche in Google Scholar

[31] A. D. Bond, Automated derivation of structural class symbols and extended Z’ descriptors for molecular crystal structures in the Cambridge Structural Database. CrystEngComm.2008, 10, 411.10.1039/b800642cSuche in Google Scholar

[32] V. K. Belsky, O. N. Zorkaya, P. M. Zorky, Structural classes and space groups of organic homomolecular crystals: new statistical data. Acta Crystallogr.1995, A51, 473.10.1107/S0108767394013140Suche in Google Scholar

[33] I. J. Bruno, J. C. Cole, M. Kessler, J. Luo, W. D. S. Motherwell, L. H. Purkis, B. R. Smith, R. Taylor, R. I. Cooper, S. E. Harris, A. G. Orpen, Retrieval of crystallographically-derived molecular geometry information. J. Chem. Inf. Comput. Sci.2004, 44, 2133.10.1021/ci049780bSuche in Google Scholar PubMed

[34] E. A. Kabova, J. C. Cole, O. Korb, A. C. Williams, K. Shankland, Improved crystal structure solution from powder diffraction data by the use of conformational information. J. Appl. Crystallogr.2017, 50, 1421.10.1107/S1600576717012596Suche in Google Scholar

[35] S. L. Bekö, S. D. Thoms, J. Brüning, E. Alig, J. van de Streek, A. Lakatos, C. Glaubitz, M. U. Schmidt, X-ray powder diffraction, solid-state NMR and dispersion-corrected DFT calculations to investigate the solid state structure of 2-ammonio-5-chloro-4-methylbenzenesulfonate. Z. Kristallogr.2010, 225, 382.10.1524/zkri.2010.1259Suche in Google Scholar

[36] S. L. Bekö, C. Czech, M. A. Neumann, M. U. Schmidt, Determination of crystal structures and tautomeric states of 2-ammoniobenzenesulfonates by laboratory X-ray powder diffraction. Z. Kristallogr.2015, 230, 611.10.1515/zkri-2015-1845Suche in Google Scholar

[37] M. Tremayne, Presentation, 27th European Crystallographic Meeting2012, Bergen.Suche in Google Scholar

[38] A. J. Markvardsen, W. I. F. David, J. C. Johnson, K. Shankland, A probabilistic approach to space-group determination from powder diffraction data. Acta Crystallogr.2001, A57, 47.10.1107/S0108767300012174Suche in Google Scholar PubMed

[39] S. N. Ivashevskaya, J. van de Streek, J. E. DJanhan, J. Brüning, E. Alig, M. Bolte, M. U. Schmidt, P. Blaschka, H. W. Höffken, P. Erk, Structure determination of seven phases and solvates of Pigment Yellow 183 and Pigment Yellow 191 from X-ray powder and single-crystal data. Acta Crystallogr.2009, B65, 212.10.1107/S0108768109001827Suche in Google Scholar PubMed

[40] M. U. Schmidt, S. Brühne, A. K. Wolf, A. Rech, J. Brüning, J. Glinemann, J. van de Streek, F. Gozzo, M. Brunelli, F. Stowasser, T. Gorelik, E. Mugnaioli, U. Kolb, Electron diffraction, X-ray powder diffraction and pair-distribution-function analyses to determine the crystal structures of Pigment Yellow 213, C23H21N5O9. Acta Crystallogr.2009, B65, 189.10.1107/S0108768109003759Suche in Google Scholar PubMed

[41] W. I. F. David, On the equivalence of Rietveld method and the correlated integrated intensities method in powder diffraction. J. Appl. Crystallogr.2004, 37, 621.10.1107/S0021889804013184Suche in Google Scholar

[42] C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler, J. van de Streek, Mercury: visualization and analysis of crystal structures. J. Appl. Crystallogr.2006, 39, 453.10.1107/S002188980600731XSuche in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2018-2093).


Received: 2018-05-02
Accepted: 2018-10-24
Published Online: 2018-11-15
Published in Print: 2019-04-24

©2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zkri-2018-2093/html
Button zum nach oben scrollen