Home Development and application of novel NMR methodologies for the in situ characterization of crystallization processes of metastable crystalline materials
Article
Licensed
Unlicensed Requires Authentication

Development and application of novel NMR methodologies for the in situ characterization of crystallization processes of metastable crystalline materials

  • Leo van Wüllen EMAIL logo , Jan Gerrit Schiffmann , Jakob Kopp , Zhongqing Liu , Holger Kirchhain , Andre Düvel and Paul Heitjans EMAIL logo
Published/Copyright: November 8, 2016

Abstract

In this contribution we report on the development and application of modern NMR approaches for the in situ characterization of the crystallization of metastable materials. The work was performed within the framework of the DFG priority programme SPP 1415 “Crystalline Non-Equilibrium Phases”. As one of the goals of this project, the development of a NMR methodology which enables an analysis of local structural motifs on short (1–2 Å) and extended (2–6 Å) length scales without the need for fast magic angle spinning (MAS) has been defined, since the enormous centripetal forces which occur during fast sample rotation (up to 107 g) may intervene with the chemical or physical process which is being monitored. To achieve this goal, we developed a magic angle turning probe and pulse sequences allowing to trace the isotropic chemical shifts and heteronuclear dipolar couplings and hence the determination of structural motifs on short and intermediate length scales. With the implementation of novel inductive heating approaches the range of accessible rotation frequencies for in situ high temperature NMR measurements has been enlarged, now covering the νMAS range of 0–10 kHz with an accessible temperature of up to 700°C. Application of NMR methodologies for the characterization of crystallization processes and the structure and dynamics of novel phases, partially in joint collaborations within the priority program, are also reported.

Acknowledgments

We gratefully acknowledge funding by the Deutsche Forschungsgemeinschaft within the priority programme SPP 1415. Collaborations and fruitful discussions within numerous members of the priority programme, especially with T. Nilges and M. Wiebcke are also cordially acknowledged.

References

[1] I. J. Lowe, Free induction decay of rotating solids. Phys. Rev. Lett.1959, 2, 285.10.1103/PhysRevLett.2.285Search in Google Scholar

[2] E. R. Andrew, A. Bradbury, R. G. Eades, Removal of dipolar broadening of nuclear magnetic resonance spectra of solids by specimen rotation. Nature1959, 183, 1802.10.1038/1831802a0Search in Google Scholar

[3] J. P. Amoureux, C. Fernandez, S. Steuernagel, Z filtering in MQMAS NMR. J. Magn. Reson. Ser. A1996, 123, 116.10.1006/jmra.1996.0221Search in Google Scholar

[4] L. B. Alemany, S. Steuernagel, J. P. Amoureux, R. L. Callender, A. R. Barron, Very fast MAS and MQMAS NMR studies of the spectroscopically challenging minerals kyanite and andalusite on 400, 500, and 800 MHz spectrometers. Solid State Nucl. Magn. Reson.1999, 14, 1.10.1016/S0926-2040(99)00011-9Search in Google Scholar

[5] C. Fernandez, J. P. Amoureux, Triple-quantum MAS-NMR of quadrupolar nuclei. Solid State Nucl. Magn. Reson.1996, 5, 315.10.1016/0926-2040(95)01197-8Search in Google Scholar

[6] A. Medek, J. S. Harwood, L. Frydman, Multiple-quantum magic-angle spinning NMR: a new method for the study of quadrupolar nuclei in solids. J. Am. Chem. Soc.1995, 117, 12779.10.1021/ja00156a015Search in Google Scholar

[7] A. Medek, L. Frydman, Multiple-quantum magic-angle spinning NMR: a new technique for probing quadrupolar nuclei in solids. J. Braz. Chem. Soc.1999, 10, 263.10.1590/S0103-50531999000400003Search in Google Scholar

[8] Z. H. Gan, Isotropic NMR spectra of half-integer quadrupolar nuclei using satellite transitions and magic-angle spinning. J. Am. Chem. Soc.2000, 122, 3242.10.1021/ja9939791Search in Google Scholar

[9] K. J. Pike, S. E. Ashbrook, S. Wimperis, Two-dimensional satellite-transition MAS NMR of quadrupolar nuclei: shifted echoes, high-spin nuclei and resolution. Chem. Phys. Lett.2001, 345, 400.10.1016/S0009-2614(01)00912-5Search in Google Scholar

[10] S. E. Ashbrook, S. Wimperis, High-resolution NMR of quadrupolar nuclei in solids: the satellite-transition magic angle spinning (STMAS) experiment. Prog. Nucl. Magn. Reson. Spectros.2004, 45, 53.10.1016/j.pnmrs.2004.04.002Search in Google Scholar

[11] M. J. Thrippleton, T. J. Ball, S. Steuernagel, S. E. Ashbrook, S. Wimperis, STARTMAS: a MAS-based method for acquiring isotropic NMR spectra of spin I=3/2 nuclei in real time. Chem. Phys. Lett.2006, 431, 390.10.1016/j.cplett.2006.09.075Search in Google Scholar

[12] A. Goldbourt, P. K. Madhu, Multiple-Quantum Magic-Angle Spinning: High-Resolution Solid-State NMR of Half-Integer Spin Quadrupolar Nuclei, In: Annual Reports on NMR Spectroscopy, (Ed. G. A. Webb), Academic Press: Burlington, 2005, vol. 54, p. 81.10.1016/S0066-4103(04)54003-6Search in Google Scholar

[13] R. Dupree, D. Holland, P. W. McMillan, R. F. Pettifer, The structure of soda silica glasses – A MAS NMR study. J. Non-Cryst. Solids1984, 68, 399.10.1016/0022-3093(84)90020-6Search in Google Scholar

[14] R. J. Kirkpatrick, MAS NMR-spectroscopy of minerals and glasses. Rev. Miner.1988, 18, 341.10.1515/9781501508974-011Search in Google Scholar

[15] R. K. Brow, R. J. Kirkpatrick, G. L. Turner, The short-range structure of sodium phosphate glasses: 1. MAS NMR studies. J. Non-Cryst. Solids1990, 116, 39.10.1016/0022-3093(90)91043-QSearch in Google Scholar

[16] C. A. Fyfe, Y. Feng, H. Grondey, G. T. Kokotailo, H. Gies, One-dimensional and two-dimensional high resolution solid state NMR studies of zeolite lattice structures. Chem. Rev.1991, 91, 1525.10.1021/cr00007a013Search in Google Scholar

[17] H. Maekawa, T. Maekawa, K. Kawamura, T. Yokokawa, The structural groups of alkali silicate glasses determined from Si-29 MAS NMR. J. Non-Cryst. Solids1991, 127, 53.10.1016/0022-3093(91)90400-ZSearch in Google Scholar

[18] X. Y. Xue, J. F. Stebbins, M. Kanzaki, P. F. McMillan, B. Poe, Pressure-induced silicon coordination and tetrahedral structural-changes in alkali oxide-silica melts up to 12 Gpa – NMR, Raman, and infrared-spectroscopy. Am. Miner.1991, 76, 8.Search in Google Scholar

[19] H. Eckert, Structural characterization of noncrystalline solids and glasses using solid-state NMR. Prog. Nucl. Magn. Reson. Spectros.1992, 24, 159.10.1016/0079-6565(92)80001-VSearch in Google Scholar

[20] B. Zibrowius, E. Loffler, M. Hunger, Multinuclear MAS NMR and IR spectroscopic study of silicon incorporation into SAPO-5, SAPO-31, and SAPO-34 molecular sieves. Zeolites1992, 12, 167.10.1016/0144-2449(92)90079-5Search in Google Scholar

[21] R. K. Brow, R. J. Kirkpatrick, G. L. Turner, Nature of alumina in phosphate glasses. 2. Structure of sodium aluminophosphate glass. J. Am. Ceram. Soc.1993, 76, 919.10.1111/j.1151-2916.1993.tb05316.xSearch in Google Scholar

[22] E. Brunner, Solid State NMR – A powerful tool for the investigation of surface hydroxyl groups in zeolites and their interactions with adsorbed probe molecules. J. Mol. Struct.1995, 355, 61.10.1016/0022-2860(95)08867-USearch in Google Scholar

[23] C. Fernandez, J. P. Amoureux, J. M. Chezeau, L. Delmotte, H. Kessler, Al-27 MAS NMR characterization of AlPO4-14 enhanced resolution and information by MQMAS. Micropor. Mater.1996, 6, 331.10.1016/0927-6513(96)00040-5Search in Google Scholar

[24] P. J. Dirken, S. C. Kohn, M. E. Smith, E. R. H. vanEck, Complete resolution of Si-O-Si and Si-O-Al fragments in an aluminosilicate glass by O-17 multiple quantum magic angle spinning NMR spectroscopy. Chem. Phys. Lett.1997, 266, 568.10.1016/S0009-2614(97)00041-9Search in Google Scholar

[25] M. Hunger, Bronsted acid sites in zeolites characterized by multinuclear solid-state NMR spectroscopy. Catal. Rev.1997, 39, 345.10.1080/01614949708007100Search in Google Scholar

[26] R. K. Brow, Review: the structure of simple phosphate glasses. J. Non-Cryst. Solids2000, 263, 1.10.1016/S0022-3093(99)00620-1Search in Google Scholar

[27] S. K. Lee, J. F. Stebbins, Al-O-Al and Si-O-Si sites in framework aluminosilicate glasses with Si/Al=1: quantification of framework disorder. J. Non-Cryst. Solids2000, 270, 260.10.1016/S0022-3093(00)00089-2Search in Google Scholar

[28] H. O. Pastore, S. Coluccia, L. Marchese, Porous aluminophosphates: from molecular sieves to designed acid catalysts. Ann. Rev. Mater. Res.2005, 35, 351.10.1146/annurev.matsci.35.103103.120732Search in Google Scholar

[29] D. R. Neuville, L. Cormier, D. Massiot, Al coordination and speciation in calcium aluminosilicate glasses: effects of composition determined by Al-27 MQ-MAS NMR and Raman spectroscopy. Chem. Geol.2006, 229, 173.10.1016/j.chemgeo.2006.01.019Search in Google Scholar

[30] G. N. Greaves, S. Sen, Inorganic glasses, glass-forming liquids and amorphizing solids. Adv. Phys.2007, 56, 1.10.1080/00018730601147426Search in Google Scholar

[31] M. Geppi, S. Borsacchi, G. Mollica, C. A. Veracini, Applications of solid-state NMR to the study of organic/inorganic multicomponent materials. Appl. Spectrosc. Rev.2009, 44, 1.10.1080/05704920802352564Search in Google Scholar

[32] R. Born, M. Feike, C. Jäger, H. W. Spiess, 2D P-31 Exchange NMR – a new approach for a direct probing of the connectivities of Q(N) units in glasses. Z. Naturfors. Sect. A-J. Phys. Sci.1995, 50, 169.10.1515/zna-1995-2-308Search in Google Scholar

[33] P. Hartmann, C. Jana, J. Vogel, C. Jager, P-31 MAS and 2D exchange NMR of crystalline silicon phosphates. Chem. Phys. Lett.1996, 258, 107.10.1016/0009-2614(96)00616-1Search in Google Scholar

[34] A. E. Bennett, J. H. Ok, R. G. Griffin, S. Vega, Chemical shift correlation spectroscopy in rotating solids: Radio frequency‐driven dipolar recoupling and longitudinal exchange. J. Chem. Phys.1992, 96, 8624.10.1063/1.462267Search in Google Scholar

[35] J. M. Griffiths, R. G. Griffin, Nuclear-magnetic-resonance methods for measuring dipolar couplings in rotating solids. Anal. Chim. Acta1993, 283, 1081.10.1016/0003-2670(93)80267-OSearch in Google Scholar

[36] M. Feike, R. Graf, I. Schnell, C. Jäger, H. W. Spiess, Structure of crystalline phosphates from P-31 double-quantum NMR spectroscopy. J. Am. Chem. Soc.1996, 118, 9631.10.1021/ja9619871Search in Google Scholar

[37] R. Tycko, G. Dabbagh, Measurement of nuclear magnetic dipole-dipole couplings in magic angle spinning Nmr. Chem. Phys. Lett.1990, 173, 461.10.1016/0009-2614(90)87235-JSearch in Google Scholar

[38] Y. K. Lee, N. D. Kurur, M. Helmle, O. G. Johannessen, N. C. Nielsen, M. H. Levitt, Efficient dipolar recoupling in the Nmr of rotating solids – a sevenfold symmetrical radiofrequency pulse sequence. Chem. Phys. Lett.1995, 242, 304.10.1016/0009-2614(95)00741-LSearch in Google Scholar

[39] T. Gullion, J. Schaefer, Rotational-echo double-resonance Nmr. J. Magn. Reson.1989, 81, 196.10.1007/1-4020-3910-7_89Search in Google Scholar

[40] Y. Pan, T. Gullion, J. Schaefer, Determination of C-N internuclear distances by rotational-echo double-resonance Nmr of solids. J. Magn. Reson.1990, 90, 330.10.1016/0022-2364(90)90138-YSearch in Google Scholar

[41] T. Gullion, Introduction to rotational-echo, double-resonance NMR. Concepts Magn. Reson.1998, 10, 277.10.1002/(SICI)1099-0534(1998)10:5<277::AID-CMR1>3.0.CO;2-USearch in Google Scholar

[42] T. Gullion, Detecting C-13-O-17 dipolar interactions by rotational-echo, adiabatic-passage, double-resonance NMR. J. Magn. Reson. Ser. A1995, 117, 326.10.1006/jmra.1995.0779Search in Google Scholar

[43] T. Gullion, Measurement of Dipolar Interactions between Spin-1/2 and quadrupolar nuclei by rotational-echo, adiabatic-passage, double-resonance NMR. Chem. Phys. Lett.1995, 246, 325.10.1016/0009-2614(95)01120-XSearch in Google Scholar

[44] C. P. Grey, W. S. Veeman, The detection of weak heteronuclear coupling between Spin-1 and Spin-1/2 Nuclei in MAS NMR – N-14/C-13/H-1 triple resonance experiments. Chem. Phys. Lett.1992, 192, 379.10.1016/0009-2614(92)85486-TSearch in Google Scholar

[45] H. Eckert, S. J. Elbers, D. Epping, M. Janssen, M. W. Kalwei, Strojek, U. Voigt, Dipolar Solid State NMR Approaches Towards Medium-Range Structure in Oxide Glasses, in Topics in Current Chemsitry 246, In: New Techniques in Solid-State NMR (Ed. J. Klinowski) p. 195, 2005.10.1007/b98651Search in Google Scholar

[46] L. van Wüllen, U. Müller, M. Jansen, Intermediate-range order in amorphous nitridic ceramics: lessons from modern solid-state NMR spectroscopy. Angew. Chem.-Int. Edit.2000, 39, 2519.10.1002/1521-3773(20000717)39:14<2519::AID-ANIE2519>3.0.CO;2-GSearch in Google Scholar

[47] L. van Wüllen, M. Jansen, Random inorganic networks: a novel class of high-performance ceramics. J. Mater. Chem.2001, 11, 223.10.1039/b002958kSearch in Google Scholar

[48] L. van Wüllen, G. Schwering, B-11-MQMAS and Si-29-{B-11} double-resonance NMR studies on the structure of binary B2O3-SiO2 glasses. Solid State Nucl. Magn. Reson.2002, 21, 134.10.1006/snmr.2002.0054Search in Google Scholar

[49] L. van Wüllen, G. Tricot, S. Wegner, An advanced NMR protocol for the structural characterization of aluminophosphate glasses. Solid State Nucl. Magn. Reson.2007, 32, 44.10.1016/j.ssnmr.2007.07.004Search in Google Scholar

[50] C. A. Fyfe, Y. Feng, H. Gies, H. Grondey, G. T. Kokotailo, Natural abundance 2-dimensional solid state Si-29 NMR: Investigations of 3-dimensional lattice connectivities in zeolite structures. J. Am. Chem. Soc.1990, 112, 3264.10.1021/ja00165a002Search in Google Scholar

[51] C. A. Fyfe, K. C. Wongmoon, Y. Huang, H. Grondey, INEPT experiments in solid state NMR. J. Am. Chem. Soc.1995, 117, 10397.10.1021/ja00146a031Search in Google Scholar

[52] A. Lesage, C. Auger, S. Caldarelli, L. Emsley, Determination of through-bond carbon-carbon connectivities in solid-state NMR using the INADEQUATE experiment. J. Am. Chem. Soc.1997, 119, 7867.10.1021/ja971089kSearch in Google Scholar

[53] A. Lesage, D. Sakellariou, S. Steuernagel, L. Emsley, Carbon-proton chemical shift correlation in solid-state NMR by through-bond multiple-quantum spectroscopy. J. Am. Chem. Soc.1998, 120, 13194.10.1021/ja983048+Search in Google Scholar

[54] D. Franke, C. Hudalla, H. Eckert, Heteronuclear X-Y double quantum MAS NMR inorganic solids Applications for indirect detection and spectral editing of rare-spin resonances. Solid State Nucl. Magn. Reson.1992, 1, 33.10.1016/0926-2040(92)90007-VSearch in Google Scholar

[55] D. Massiot, F. Fayon, B. Alonso, J. Trebosc, J. P. Amoureux, Chemical bonding differences evidenced from J-coupling in solid state NMR experiments involving quadrupolar nuclei. J. Magn. Reson.2003, 164, 160.10.1016/S1090-7807(03)00134-4Search in Google Scholar

[56] S. P. Brown, Perez-M. Torralba, D. Sanz, R. M. Claramunt, L. Emsley, Determining hydrogen-bond strengths in the solid state by NMR: the quantitative measurement of homonuclear J couplings. Chem. Commun.2002, 38, 1852.10.1039/B205324ASearch in Google Scholar

[57] F. Fayon, I. J. King, R. K. Harris, J. S. O. Evans, D. Massiot, Application of the through-bond correlation NMR experiment to the characterization of crystalline and disordered phosphates. Comptes Rendus Chimie2004, 7, 351.10.1016/j.crci.2003.10.019Search in Google Scholar

[58] H. Liu, H. Ernst, D. Freude, F. Scheffler, W. Schwieger, In situ B-11 MAS NMR study of the synthesis of a boron-containing MFI type zeolite. Microporous Mesoporous Mat.2002, 54, 319.10.1016/S1387-1811(02)00392-XSearch in Google Scholar

[59] A. Ananthanarayanan, L. van Wuellen, Achieving high resolution dipolar NMR information without fast sample spinning: combining magic angle turning with dipolar based NMR methods. Solid State Nucl. Magn. Reson.2013, 49–50, 42.10.1016/j.ssnmr.2012.11.005Search in Google Scholar

[60] S. Springer, I. A. Baburin, T. Heinemeyer, J. G. Schiffmann, L. van Wuellen, S. Leoni, M. Wiebcke, A zeolitic imidazolate framework with conformational variety: conformational polymorphs versus frameworks with static conformational disorder. Crystengcomm2016, 18, 2477.10.1039/C6CE00312ESearch in Google Scholar

[61] C. A. Schröder, I. A. Baburin, L. van Wüllen, M. Wiebcke, S. Leoni, Subtle polymorphism of zinc imidazolate frameworks: temperature-dependent ground states in the energy landscape revealed by experiment and theory. Crystengcomm2013, 15, 4036.10.1039/C2CE26045JSearch in Google Scholar

[62] A. Düvel, A. Kuhn, L. Robben, M. Wilkening, P. Heitjans, Mechanosynthesis of solid electrolytes: preparation, characterization, and Li ion transport properties of garnet-type Al-doped Li7La3Zr2O12 crystallizing with cubic symmetry. J. Phys. Chem. C2012, 116, 15192.10.1021/jp301193rSearch in Google Scholar

[63] V. Baran, L. van Wüllen, T. F. Faessler, Substitution of lithium for magnesium, zinc, and aluminum in Li15Si4: crystal structures, thermodynamic properties, as well as 6Li and 7Li NMR spectroscopy of Li15Si4 and Li15-xMxSi4 (M=Mg, Zn, and Al). Chem.-Eur. J.2016, 22, 6598.10.1002/chem.201505145Search in Google Scholar

[64] A. Bax, N. Z. Szeverenyi, G. E. Maciel, Correlation of isotropic shifts and chemical shift anisotropies by two-dimensional fourier-transform magic-angle hopping NMR spectroscopy. J. Magn. Reson.1983, 52, 147.10.1016/0022-2364(83)90267-6Search in Google Scholar

[65] N. M. Szeverenyi, A. Bax, G. E. Maciel, Magic-angle hopping as an alternative to magic-angle spinning for solid state NMR. J. Magn. Reson.1985, 61, 440.10.1016/0022-2364(85)90184-2Search in Google Scholar

[66] Z. H. Gan, High resolution chemical shift and chemical shift anisotropy correlation in solids using slow magic angle spinning. J. Am. Chem. Soc.1992, 114, 8307.10.1021/ja00047a062Search in Google Scholar

[67] S. Mamone, A. Dorsch, O. G. Johannessen, M. V. Naik, P. K. Madhu, M. H. Levitt, A Hall effect angle detector for solid-state NMR. J. Magn. Reson.2008, 190, 135.10.1016/j.jmr.2007.07.012Search in Google Scholar PubMed

[68] J. Z. Hu, W. Wang, F. Liu, M. S. Solum, D. W. Alderman, R. J. Pugmire, D. M. Grant, Magic-angle turning experiments for measuring chemical shift tensor principal values in powdered solids. J. Magn. Reson. Ser. A1995, 113, 210.10.1006/jmra.1995.1082Search in Google Scholar

[69] D. W. Alderman, G. McGeorge, J. Z. Hu, R. J. Pugmire, D. M. Grant, A sensitive, high resolution magic angle turning experiment for measuring chemical shift tensor principal values. Mol. Phys.1998, 95, 1113.10.1080/00268979809483243Search in Google Scholar

[70] G. G. Maresch, R. D. Kendrick, C. S. Yannoni, High temperature NMR using inductive heating. Rev. Sci. Instrum.1990, 61, 77.10.1063/1.1141903Search in Google Scholar

[71] D. B. Ferguson, J. F. Haw, Transient methods for in situ NMR of reactions on solid catalysts using temperature jumps. Anal. Chem.1995, 67, 3342.10.1021/ac00114a034Search in Google Scholar

[72] J. Rinnenthal, D. Wagner, T. Marquardsen, A. Krahn, F. Engelke, H. Schwalbe, A temperature-jump NMR probe setup using rf heating optimized for the analysis of temperature-induced biomacromolecular kinetic processes. J. Magn. Reson.2015, 251, 84.10.1016/j.jmr.2014.11.012Search in Google Scholar PubMed

[73] H. Kirchhain, J. Holzinger, A. Mainka, A. Spörhase, A. Wixforth, L. van Wüllen, High-temperature MAS-NMR at high spinning speeds. Solid State Nucl. Magn. Reson.2016, 78, 37.10.1016/j.ssnmr.2016.06.003Search in Google Scholar PubMed

[74] S. Wegner, L. van Wuellen, G. Tricot, Network dynamics and species exchange processes in aluminophosphate glasses: an in situ high temperature magic angle spinning NMR view. J. Phys. Chem. B2009, 113, 416.10.1021/jp8061064Search in Google Scholar PubMed

[75] M. S. Whittingham, Lithium batteries and cathode materials. Chem. Rev.2004, 104, 4271.10.1021/cr020731cSearch in Google Scholar PubMed

[76] A. S. Arico, P. Bruce, B. Scrosati, J. M. Tarascon, W. Van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices. Nature Materials2005, 4, 366.10.1142/9789814317665_0022Search in Google Scholar

[77] P. G. Bruce, B. Scrosati, J.-M. Tarascon, Nanomaterials for rechargeable lithium batteries. Angew. Chem.-Int. Edit.2008, 47, 2930.10.1002/anie.200702505Search in Google Scholar PubMed

[78] J. B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries. Chem. Mat.2010, 22, 587.10.1021/cm901452zSearch in Google Scholar

[79] D. Bresser, S. Passerini, B. Scrosati, Recent progress and remaining challenges in sulfur-based lithium secondary batteries – a review. Chem. Commun.2013, 49, 10545.10.1039/c3cc46131aSearch in Google Scholar PubMed

[80] B. C. Melot, J. M. Tarascon, Design and preparation of materials for advanced electrochemical storage. Acc. Chem. Res.2013, 46, 1226.10.1021/ar300088qSearch in Google Scholar PubMed

[81] C. V. Chandran, P. Heitjans, Solid-state NMR studies of lithium ion dynamics across materials classes. Ann. Rep. NMR Spectrosc. 2016, 89, 1.10.1016/bs.arnmr.2016.03.001Search in Google Scholar

[82] V. Thangadurai, W. Weppner, Li6ALa2Ta2O12 (A=Sr, Ba): Novel garnet-like oxides for fast lithium ion conduction. Adv. Funct. Mater.2005, 15, 107.10.1002/adfm.200400044Search in Google Scholar

[83] L. van Wüllen, T. Echelmeyer, H.-W. Meyer, D. Wilmer, The mechanism of Li-ion transport in the garnet Li5La3Nb2O12. Phys. Chem. Chem. Phys.2007, 9, 3298.10.1039/B703179CSearch in Google Scholar PubMed

[84] S. Ohta, T. Kobayashi, T. Asaoka, High lithium ionic conductivity in the garnet-type oxide Li7-X La3(Zr2-X, NbX)O12 (X=0-2). J. Power Sources2011, 196, 3342.10.1016/j.jpowsour.2010.11.089Search in Google Scholar

[85] H. Buschmann, J. Dölle, S. Berendts, A. Kuhn, P. Bottke, M. Wilkening, P. Heitjans, A. Senyshyn, H. Ehrenberg, A. Lotnyk, V. Duppel, L. Kienle, J. Janek, Structure and dynamics of the fast lithium ion conductor “Li7La3Zr2O12”. Phys. Chem. Chem. Phys.2011, 13, 19378.10.1039/c1cp22108fSearch in Google Scholar

[86] V. Thangadurai, S. Narayanan, D. Pinzaru, Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem. Soc. Rev.2014, 43, 4714.10.1039/c4cs00020jSearch in Google Scholar

[87] H.-J. Deiseroth, S.-T. Kong, H. Eckert, J. Vannahme, C. Reiner, T. Zaiss, M. Schlosser, Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility. Angew. Chem.-Int. Edit.2008, 47, 755.10.1002/anie.200703900Search in Google Scholar

[88] V. Epp, O. Guen, H.-J. Deiseroth, M. Wilkening, Highly mobile ions: low-temperature NMR directly probes extremely fast Li+ hopping in argyrodite-type Li6PS5Br. J. Phys. Chem. Lett.2013, 4, 2118.10.1021/jz401003aSearch in Google Scholar

[89] H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka, G. Adachi, Ionic conductivity of solid electrolytes based on Lithium Titanium Phosphate. J. Electrochem. Soc.1990, 137, 1023.10.1149/1.2086597Search in Google Scholar

[90] G. Y. Adachi, N. Imanaka, H. Aono, Fast Li-circle plus conducting ceramic electrolytes. Adv. Mater.1996, 8, 127.10.1002/adma.19960080205Search in Google Scholar

[91] M. A. Paris, J. Sanz, Structural changes in the compounds LiM2(IV)(PO4)3 (M-IV=Ge, Ti, Sn, and Hf) as followed by P-31 and Li-7 NMR. Phys. Rev. B1997, 55, 14270.10.1103/PhysRevB.55.14270Search in Google Scholar

[92] M. Cretin, P. Fabry, Comparative study of lithium ion conductors in the system Li1-xAlxA2-x(IV) (PO4)3 with A(IV)=Ti or Ge and 0 <= x <= 0.7 for use as Li+ sensitive membranes. J. Eur. Ceram. Soc.1999, 19, 2931.10.1016/S0955-2219(99)00055-2Search in Google Scholar

[93] X. Xu, Z. Wen, X. Wu, X. Yang, Z. Gu, Lithium ion-conducting glass-ceramics of Li1.5Al0.5Ge1.5(PO4)3–xLi2O (x=0.0-0.20) with good electrical and electrochemical properties. J. Am. Ceram. Soc.2007, 90, 2802.10.1111/j.1551-2916.2007.01827.xSearch in Google Scholar

[94] J. S. Thokchom, N. Gupta, B. Kumar, Superionic conductivity in a lithium aluminum germanium phosphate glass-ceramic. J. Electrochem. Soc.2008, 155, A915.10.1149/1.2988731Search in Google Scholar

[95] Z. Liu, S. Venkatachalam, H. Kirchhain, L. Van Wüllen, Study of the glass-to-crystal transformation of the NASICON-type electrolyte Li1+xAlxGe2-x(PO4)3. Solid State Ionics.2016, 295, 32.10.1016/j.ssi.2016.07.006Search in Google Scholar

[96] C. Schröder, J. Ren, A. C. M. Rodrigues, H. Eckert, Glass-to-crystal transition in Li1+xAlxGe2-x(PO4)3: structural aspects studied by solid state. J. Phys. Chem. C2014, 118, 9400.10.1021/jp502265hSearch in Google Scholar

[97] Z. Liu, S. Venkatachalam, L. van Wüllen, Structure, phase separation and Li dynamics in sol-gel-derived Li1+xAlxGe2-x(PO4)3. Solid State Ionics.2015, 276, 47.10.1016/j.ssi.2015.03.018Search in Google Scholar

[98] K. E. D.Wapenaar, J. L. Vankoesveld, J. Schoonman, Conductivity enhancement in fluorite-structured Ba1-xLaxF2+x solid solutions. Solid State Ionics.1981, 2, 145.10.1016/0167-2738(81)90172-7Search in Google Scholar

[99] B. P. Sobolev, N. L. Tkachenko, Phase diagrams of BaF2-(Y,Ln)F3 systems. J. Less Common Met.1982, 85, 155.10.1016/0022-5088(82)90067-4Search in Google Scholar

[100] S. V. Kuznetsov, P. P. Fedorov, Morphological stability of solid-liquid interface during melt crystallization of M1-x RxF2+x solid solutions. Inorg. Mater.2008, 44, 1434.10.1134/S0020168508130037Search in Google Scholar

[101] J. K. Kjems, N. H. Andersen, J. Schoonman, K. Clausen, Structure and dynamics of disordered solids – a neutron scattering study of Ba1-xLaxF2+x. Phys. B1983, 120, 357.10.1016/0378-4363(83)90406-0Search in Google Scholar

[102] N. H. Andersen, K. N. Clausen, J. K. Kjems, J. Schoonman, A study of the disorder in heavily doped Ba1-XLaXF2+X by neutron-scattering, ionic-conductivity and specific-heat measurements. J. Phys. C1986, 19, 2377.10.1088/0022-3719/19/14/004Search in Google Scholar

[103] A. Düvel, B. Ruprecht, P. Heitjans, M. Wilkening, Mixed alkaline-earth effect in the metastable anion conductor Ba1-xCaxF2 (0 <= x <= 1): correlating long-range ion transport with local structures revealed by ultrafast F-19 MAS NMR. J. Phys. Chem. C2011, 115, 23784.10.1021/jp208472fSearch in Google Scholar

[104] A. Düvel, J. Bednarcik, V. Sepelak, P. Heitjans, Mechanosynthesis of the fast fluoride ion conductor Ba1-xLaxF2+x: from the fluorite to the tysonite structure. J. Phys. Chem. C2014, 118, 7117.10.1021/jp410018tSearch in Google Scholar

[105] N. I. Sorokin, SnF2-based solid electrolytes. Inorg. Mater.2004, 40, 989.10.1023/B:INMA.0000041335.17098.d1Search in Google Scholar

[106] S. Ghedia, High pressure – high temperature investigations of solid oxides and fluorides. MPI fürFestkörperforschung, Stuttgart 2010.Search in Google Scholar

[107] G. Denes, Phase-transitions and structural relationships between Ge5F12, GeF2, SnF2, and TeO2. J. Solid State Chem.1989, 78, 52.10.1016/0022-4596(89)90127-8Search in Google Scholar

[108] G. Denes, J. Pannetier, J. Lucas, About SnF2 stannous fluoride. 2. Crystal structure of beta-SnF2 and gamma-SnF2. J. Solid State Chem.1980, 33, 1.10.1016/0022-4596(80)90541-1Search in Google Scholar

[109] R. C. McDonald, H. H. Hau, K. Eriks, Crystallographic studies of Tin(II) compounds. 1. Crystal structure of tin(II)fluoride, SnF2. Inorg. Chem.1976, 15, 762.10.1021/ic50158a003Search in Google Scholar

[110] T. Braeuniger, S. Ghedia, M. Jansen, Covalent bonds in alpha-SnF2 monitored by J-couplings in solid-state NMR spectra. Z. Anorg. Allg. Chem.2010, 636, 2399.10.1002/zaac.201000176Search in Google Scholar

[111] E. Banks, S. Nakajima, M. Shone, New complex fluorides EuMgF4, SmMgF4, SrMgF4, and their solid solutions – photo-luminescence and energy transfer. J. Electrochem. Soc.1980, 127, 2234.10.1149/1.2129382Search in Google Scholar

[112] Q. Bingyi, E. Banks, The binary system SrF2-MgF2 – Phase diagram and study of growth of SrMgF4. Mater. Res. Bull.1982, 17, 1185.10.1016/0025-5408(82)90067-8Search in Google Scholar

[113] N. Ishizawa, K. Suda, B. E. Etschmann, T. Oya, N. Kodama, Monoclinic superstructure of SrMgF4 with perovskite-type slabs. Acta Crystal. C2001, 57, 784.10.1107/S0108270101006667Search in Google Scholar

[114] C. Veitsch, F. Kubel, H. Hagemann, Photoluminescence of nanocrystalline SrMgF4 prepared by a solution chemical route. Mater. Res. Bull.2008, 43, 168.10.1016/j.materresbull.2007.02.010Search in Google Scholar

[115] G. Scholz, S. Breitfeld, T. Krahl, A. Düvel, P. Heitjans, E. Kemnitz, Mechanochemical synthesis of MgF2 – MF2 composite systems (M=Ca, Sr, Ba). Solid State Sci.2015, 50, 32.10.1016/j.solidstatesciences.2015.10.004Search in Google Scholar

Received: 2016-6-10
Accepted: 2016-9-6
Published Online: 2016-11-8
Published in Print: 2017-2-1

©2017 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Graphical Synopsis
  3. Editorial
  4. Synthesis and characterization of metastable transition metal oxides and oxide nitrides
  5. Control of organic polymorph formation: crystallization pathways in acoustically levitated droplets
  6. Thermal annealing of natural, radiation-damaged pyrochlore
  7. The formation of CdS quantum dots and Au nanoparticles
  8. Crystalline chalcogenido metalates – synthetic approaches for materials synthesis and transformation
  9. Fundamental theoretical and practical investigations of the polymorph formation of small amphiphilic molecules, their co-crystals and salts
  10. A density-functional theory approach to the existence and stability of molybdenum and tungsten sesquioxide polymorphs
  11. The ZIF system zinc(II) 4,5-dichoroimidazolate: theoretical and experimental investigations of the polymorphism and crystallization mechanisms
  12. Element allotropes and polyanion compounds of pnicogenes and chalcogenes: stability, mechanisms of formation, controlled synthesis and characterization
  13. Structure and ion dynamics of mechanosynthesized oxides and fluorides
  14. Scaled-up solvothermal synthesis of nanosized metastable indium oxyhydroxide (InOOH) and corundum-type rhombohedral indium oxide (rh-In2O3)
  15. Development and application of novel NMR methodologies for the in situ characterization of crystallization processes of metastable crystalline materials
  16. Phase formation and stability in TiOx and ZrOx thin films: Extremely sub-stoichiometric functional oxides for electrical and TCO applications
  17. Investigations on the growth of bismuth oxido clusters and the nucleation to give metastable bismuth oxide modifications
  18. Divalent metal phosphonates – new aspects for syntheses, in situ characterization and structure solution
  19. Type-I silicon clathrates containing lithium
  20. Experimental and theoretical investigation of the chromium–vanadium–antimony system
  21. Synthesis and crystal structure of three new bismuth(III) arylsulfonatocarboxylates
  22. Snapshots of calcium carbonate formation – a step by step analysis
Downloaded on 15.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zkri-2016-1975/html?lang=en
Scroll to top button