Startseite A density-functional theory approach to the existence and stability of molybdenum and tungsten sesquioxide polymorphs
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A density-functional theory approach to the existence and stability of molybdenum and tungsten sesquioxide polymorphs

  • Nils Becker , Christoph Reimann , Dominik Weber , Tobias Lüdtke , Martin Lerch , Thomas Bredow und Richard Dronskowski EMAIL logo
Veröffentlicht/Copyright: 26. August 2016

Abstract

The sesquioxides of molybdenum and tungsten have been reported as thin films or on surfaces as early as 1971, but the preparation of bulk materials and their crystal structures are still unknown up to the present day. We present a systematic ab initio approach to their possible syntheses and crystal structures applying complementary methods and basis-set types. For both compounds, the corundum structure is the most stable and does not display any imaginary frequencies. Calculations targeted at a high-pressure synthesis starting from the stable oxides and metals predict a reaction pressure of 15 GPa for Mo2O3 and over 60 GPa for W2O3.

Acknowledgments

This work was supported by the DFG within the priority program SPP 1415. We thank the computing center at RWTH Aachen University for providing large amounts of CPU time.

References

[1] L. S. Palatnik, O. A. Obol’yaninova, M. N. Naboka, N. T. Gladkikh, New tungsten oxide modifications. Izvestiya Akademii Nauk SSSR, Neorganicheskie Materialy1973, 9, 801.Suche in Google Scholar

[2] B. G. Eristavi, E. M. Diasamidze, R. N. Dekanosidze, N. I. Maisuradze, E. R. Kutelia, A. V. Sichinava, N. E. Menabde, Structural transformations of oxygen implanted surfaces of refractory metals (Mo, W, Nb). Acta Metall. Mater.1991, 39, 1703.10.1016/0956-7151(91)90259-4Suche in Google Scholar

[3] C. L. Dezelah, O. M. El-Kadri, I. M. Szilágyi, J. M. Campbell, K. Arstila, L. Niinistö, C. H. Winter, Atomic layer deposition of tungsten(III) oxide thin films from W2(NMe2)6 and water: precursor-based control of oxidation state in the thin film material. J. Am. Chem. Soc.2006, 128, 9638.10.1021/ja063272wSuche in Google Scholar

[4] D. Weber, A. Stork, S. Nakhal, C. Wessel, C. Reimann, W. Hermes, A. Müller, T. Ressler, R. Pöttgen, T. Bredow, R. Dronskowski, M. Lerch, Bixbyite-Type V2O3 – a metastable polymorph of vanadium sesquioxide. Inorg. Chem.2011, 50, 6762.10.1021/ic200799nSuche in Google Scholar

[5] G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci.1996, 6, 15.10.1016/0927-0256(96)00008-0Suche in Google Scholar

[6] P. E. Blöchl, Projector augmented-wave method. Phys. Rev. B1994, 50, 17953.10.1103/PhysRevB.50.17953Suche in Google Scholar

[7] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]. Phys. Rev. Lett.1997, 78, 1396.10.1103/PhysRevLett.78.1396Suche in Google Scholar

[8] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett.1996, 77, 3865.10.1103/PhysRevLett.77.3865Suche in Google Scholar PubMed

[9] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys.2010, 132, 154104.10.1063/1.3382344Suche in Google Scholar PubMed

[10] S. Grimme, S. Ehrlich, L. Goerigk, Effect of the damping function in dispersion corrected density functional theory. J Comput. Chem.2011, 32, 1456.10.1002/jcc.21759Suche in Google Scholar PubMed

[11] F. Birch, Finite elastic strain of cubic crystals. Phys. Rev.1947, 71, 809.10.1103/PhysRev.71.809Suche in Google Scholar

[12] A. Togo, F. Oba, I. Tanaka, First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys. Rev. B2008, 78, 134106.10.1103/PhysRevB.78.134106Suche in Google Scholar

[13] R. P. Stoffel, C. Wessel, M.-W. Lumey, R. Dronskowski, Ab initio thermochemistry of solid-state materials. Angew. Chem. Int. Ed.2010, 49, 5242.10.1002/anie.200906780Suche in Google Scholar PubMed

[14] R. Dovesi, R. Orlando, A. Erba, C. M. Zicovich-Wilson, B. Civalleri, S. Casassa, L. Maschio, M. Ferrabone, M. De La Pierre, P. D’Arco, Y. Noël, M. Causà, M. Rérat, B. Kirtman, CRYSTAL14: a program for the ab initio investigation of crystalline solids. Int. J. Quantum Chem.2014, 114, 1287.10.1002/qua.24658Suche in Google Scholar

[15] C. Wessel, C. Reimann, A. Müller, D. Weber, M. Lerch, T. Ressler, T. Bredow, R. Dronskowski, Electronic structure and thermodynamics of V2O3 polymorphs. J. Comput. Chem.2012, 33, 2102.10.1002/jcc.23046Suche in Google Scholar PubMed

[16] H. Wolff, T. Bredow, M. Lerch, H. Schilling, E. Irran, A. Stork, R. Dronskowski, A first-principles study of the electronic and structural properties of γ-TaON. J. Phys. Chem. A2007, 111, 2745.10.1021/jp0687246Suche in Google Scholar PubMed

[17] T. Bredow, A. R. Gerson, Effect of exchange and correlation on bulk properties of MgO, NiO, and CoO. Phys. Rev. B2000, 61, 5194.10.1103/PhysRevB.61.5194Suche in Google Scholar

[18] F. Cora, A. Patel, N. M. Harrison, C. Roetti, C. Richard A. Catlow, An ab initio Hartree-Fock study of α-MoO3. J. Mater. Chem.1997, 7, 959.10.1039/a607439aSuche in Google Scholar

[19] F. Corà, A. Patel, N. M. Harrison, R. Dovesi, C. R. A. Catlow, An ab initio Hartree–Fock study of the cubic and tetragonal phases of bulk tungsten trioxide. J. Am. Chem. Soc.1996, 118, 12174.10.1021/ja961514uSuche in Google Scholar

[20] A. M. Ferrari, C. Pisani, An ab initio periodic study of NiO supported at the Pd(100) surface. Part 1: the perfect epitaxial monolayer. J. Phys. Chem. B2006, 110, 7909.10.1021/jp057401rSuche in Google Scholar PubMed

[21] E. Newnham, Y. M de. Haan, Refinement of the Al2O3, Ti2O3, V2O3 and Cr2O3 structures. Z. Kristallogr.1962, 117, 235.10.1524/zkri.1962.117.16.235Suche in Google Scholar

[22] P. D. Dernier, M. Marezio, Crystal structure of the low-temperature antiferromagnetic phase of V2O3. Phys. Rev. B1970, 2, 3771.10.1103/PhysRevB.2.3771Suche in Google Scholar

[23] J. Ahman, G. Svensson, J. Albertsson, A reinvestigation of β-gallium oxide. Acta Crystallogr., Sect. C1996, 52, 1336.10.1107/S0108270195016404Suche in Google Scholar

[24] R. D. Shannon, C. T. Prewitt, Synthesis and structure of a new high-pressure form of Rh2O3. J. Solid State Chem.1970, 2, 134.10.1016/0022-4596(70)90041-1Suche in Google Scholar

[25] D. T. Cromer, The crystal structure of monoclinic Sm2O2. J. Phys. Chem.1957, 61, 753.10.1021/j150552a011Suche in Google Scholar

[26] C. Svensson, The crystal structure of orthorhombic antimony trioxide, Sb2O3. Acta Crystallogr., Sect. B1974, 30, 458.10.1107/S0567740874002986Suche in Google Scholar

[27] P. G. Jones, H. Rumpel, E. Schwarzmann, G. M. Sheldrick, H. Paulus, Gold(III) oxide. Acta Crystallogr., Sect. B1979, 35, 1435.10.1107/S0567740879006622Suche in Google Scholar

[28] E. Tronc, C. Chanéac, J. P. Jolivet, Structural and magnetic characterization of ε-Fe2O3. J. Solid State Chem.1998, 139, 93.10.1006/jssc.1998.7817Suche in Google Scholar

[29] L. Smrčok, V. Langer, M. Halvarsson, S. Ruppi, A new Rietveld refinement of κ-Al2O3. Z. Kristallogr.2001, 216, 409.10.1524/zkri.216.7.409.20361Suche in Google Scholar

[30] A. Kyono, M. Kimata, Structural variations induced by difference of the inert pair effect in the stibnite-bismuthinite solid solution series (Sb,Bi)2S3. Am. Mineral.2004, 89, 932.10.2138/am-2004-0702Suche in Google Scholar

[31] S. Geller, Crystal structure of gadolinium orthoferrite, GdFeO3. J. Chem. Phys.1956, 24, 1236.10.1063/1.1742746Suche in Google Scholar

[32] W. C. Koehler, E. O. Wollan, Neutron-diffraction study of the structure of the A-form of the rare earth sesquioxides. Acta Crystallogr.1953, 6, 741.10.1107/S0365110X53002076Suche in Google Scholar

[33] S. Nakhal, W. Hermes, T. Ressler, R. Pöttgen, M. Lerch, Synthesis, crystal structure and magnetic properties of bixbyite-type vanadium oxide nitrides. Z. Naturforsch. B2009, 64, 281.10.1515/znb-2009-0305Suche in Google Scholar

[34] B. Stehlík, P. Weidenthaler, J. Vlach: Kristallstruktur von Silber(III)-Oxyd. Collect. Czech. Chem. Commun.1959, 24, 1581.10.1135/cccc19591581Suche in Google Scholar

[35] C. Wessel, R. Dronskowski, A first-principles study on chromium sesquioxide, Cr2O3. J. Solid State Chem.2013, 199, 149.10.1016/j.jssc.2012.12.019Suche in Google Scholar


Supplemental Material:

The online version of this article (DOI: 10.1515/zkri-2016-1960) offers supplementary material, available to authorized users.


Received: 2016-5-25
Accepted: 2016-8-4
Published Online: 2016-8-26
Published in Print: 2017-2-1

©2017 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Graphical Synopsis
  3. Editorial
  4. Synthesis and characterization of metastable transition metal oxides and oxide nitrides
  5. Control of organic polymorph formation: crystallization pathways in acoustically levitated droplets
  6. Thermal annealing of natural, radiation-damaged pyrochlore
  7. The formation of CdS quantum dots and Au nanoparticles
  8. Crystalline chalcogenido metalates – synthetic approaches for materials synthesis and transformation
  9. Fundamental theoretical and practical investigations of the polymorph formation of small amphiphilic molecules, their co-crystals and salts
  10. A density-functional theory approach to the existence and stability of molybdenum and tungsten sesquioxide polymorphs
  11. The ZIF system zinc(II) 4,5-dichoroimidazolate: theoretical and experimental investigations of the polymorphism and crystallization mechanisms
  12. Element allotropes and polyanion compounds of pnicogenes and chalcogenes: stability, mechanisms of formation, controlled synthesis and characterization
  13. Structure and ion dynamics of mechanosynthesized oxides and fluorides
  14. Scaled-up solvothermal synthesis of nanosized metastable indium oxyhydroxide (InOOH) and corundum-type rhombohedral indium oxide (rh-In2O3)
  15. Development and application of novel NMR methodologies for the in situ characterization of crystallization processes of metastable crystalline materials
  16. Phase formation and stability in TiOx and ZrOx thin films: Extremely sub-stoichiometric functional oxides for electrical and TCO applications
  17. Investigations on the growth of bismuth oxido clusters and the nucleation to give metastable bismuth oxide modifications
  18. Divalent metal phosphonates – new aspects for syntheses, in situ characterization and structure solution
  19. Type-I silicon clathrates containing lithium
  20. Experimental and theoretical investigation of the chromium–vanadium–antimony system
  21. Synthesis and crystal structure of three new bismuth(III) arylsulfonatocarboxylates
  22. Snapshots of calcium carbonate formation – a step by step analysis
Heruntergeladen am 15.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zkri-2016-1960/html?lang=de
Button zum nach oben scrollen