Startseite An overview on trehalolipids: a promising eco-friendly bio-surfactant
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

An overview on trehalolipids: a promising eco-friendly bio-surfactant

  • Vinayak C. Khandare

    Vinayak C. Khandare received his bachelor’s degree in Chemical Engineering from Mumbai University in 2020. He is currently working as a research scholar at the Institute of Chemical Technology, Mumbai.

    und Chandu S. Madankar

    Chandu S. Madankar got his Ph. D. from Indian Institute of Technology, Delhi, India in the field of Chemical Technology. He has published 23 research articles. He was the recipient of the Canadian Commonwealth Fellowship in University of Saskatchewan, Canada in 2011. Currently, Dr. Madankar is working as Assistant Professor at the Oils, Oleochemicals and Surfactants Department.

    EMAIL logo
Veröffentlicht/Copyright: 8. Januar 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Amphiphilic surfactants, which are currently used mainly for cleaning purposes, are produced in large quantities from petroleum, but are often harmful to the environment and poorly biodegradable. Therefore, the importance of environmentally friendly, non-toxic and skin-friendly biosurfactants is increasing. Different types of biosurfactants exist depending on their molecular structure. Trehalolipids belong to the low molecular weight glycolipids. Compared to other microbial glycolipids, they often show different properties and performances, including inhibition and enhancement of biodegradation rates. Optimisation of their production and downstream processing is one of the major obstacles to the potential use of trehaloselipids in a range of applications. This review provides an overview of different substrates and microorganisms used for trehalose lipid production, as well as various applications in bioremediation, biomedicine and microbial enhanced oil recovery.


Corresponding author: Chandu S. Madankar, Department of Oils, Oleochemicals & Surfactants Technology, Institute of Chemical Technology, Mumbai, India, E-mail:

About the authors

Vinayak C. Khandare

Vinayak C. Khandare received his bachelor’s degree in Chemical Engineering from Mumbai University in 2020. He is currently working as a research scholar at the Institute of Chemical Technology, Mumbai.

Chandu S. Madankar

Chandu S. Madankar got his Ph. D. from Indian Institute of Technology, Delhi, India in the field of Chemical Technology. He has published 23 research articles. He was the recipient of the Canadian Commonwealth Fellowship in University of Saskatchewan, Canada in 2011. Currently, Dr. Madankar is working as Assistant Professor at the Oils, Oleochemicals and Surfactants Department.

References

1. Liu, G., Zhong, H., Yang, X., Liu, Y., Shao, B., Liu, Z. Advances in applications of rhamnolipids biosurfactant in environmental remediation: a review. Biotechnol. Bioeng. 2018, 115, 796–814; https://doi.org/10.1002/bit.26517.Suche in Google Scholar PubMed

2. Shekhar, S., Sundaramanickam, A., Balasubramanian, T. Biosurfactant producing microbes and their potential applications: a review. Crit. Rev. Environ. Sci. Technol. 2015, 45, 1522–1554; https://doi.org/10.1080/10643389.2014.955631.Suche in Google Scholar

3. Franzetti, A., Gandolfi, I., Bestetti, G., Smyth, T. J. P., Banat, I. M. Production and applications of trehalose lipid biosurfactants. Eur. J. Lipid Sci. Technol. 2010, 112, 617–627; https://doi.org/10.1002/ejlt.200900162.Suche in Google Scholar

4. Neu, T. R. Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiol. Rev. 1996, 60, 151–166; https://doi.org/10.1128/mmbr.60.1.151-166.1996.Suche in Google Scholar

5. Abu‐Ruwaida, A. S., Banat, I. M., Haditirto, S., Salem, A., Kadri, M. Isolation of biosurfactant‐producing bacteria, product characterization, and evaluation. Acta Biotechnol. 1991, 11, 315–324; https://doi.org/10.1002/abio.370110405.Suche in Google Scholar

6. Inès, M., Dhouha, G. Glycolipid biosurfactants: potential related biomedical and biotechnological applications. Carbohydr. Res. 2015, 416, 59–69; https://doi.org/10.1016/j.carres.2015.07.016.Suche in Google Scholar PubMed

7. Jahan, R., Bodratti, A. M., Tsianou, M., Alexandridis, P. Biosurfactants, natural alternatives to synthetic surfactants: physicochemical properties and applications. Adv. Colloid Interface Sci. 2020, 275, 1–71; https://doi.org/10.1016/j.cis.2019.102061.Suche in Google Scholar PubMed

8. Akbari, S., Abdurahman, N. H., Yunus, R. M., Fayaz, F., Alara, O. R. Biosurfactants—a new Frontier for social and environmental safety: a mini review. Biotechnol. Res. Innovat. 2018, 2, 81–90; https://doi.org/10.1016/j.biori.2018.09.001.Suche in Google Scholar

9. Rivera, Á. D., Martínez Urbina, M. Á., López y López, V. E. Advances on research in the use of agro-industrial waste in biosurfactant production. World J. Microbiol. Biotechnol. 2019, 35, 1–18; https://doi.org/10.1007/s11274-019-2729-3.Suche in Google Scholar PubMed

10. Vigneshwaran, C., Sivasubramanian, V., Vasantharaj, K., Krishnanand, N., Jerold, M. Potential of Brevibacillus sp. AVN 13 isolated from crude oil contaminated soil for biosurfactant production and its optimization studies. J. Environ. Chem. Eng. 2018, 6, 4347–4356; https://doi.org/10.1016/j.jece.2018.06.036.Suche in Google Scholar

11. Maier, R. M., Soberón-Chávez, G. Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Appl. Microbiol. Biotechnol. 2000, 54, 625–633; https://doi.org/10.1007/s002530000443.Suche in Google Scholar PubMed

12. Wei, Y. H., Chou, C. L., Chang, J. S. Rhamnolipid production by indigenous Pseudomonas aeruginosa J4 originating from petrochemical wastewater. Biochem. Eng. J. 2005, 27, 146–154; https://doi.org/10.1016/j.bej.2005.08.028.Suche in Google Scholar

13. Adesra, A., Srivastava, V. K., Varjani, S. Valorization of dairy wastes: integrative approaches for value added products. Indian J. Microbiol. 2021, 61, 270–278; https://doi.org/10.1007/s12088-021-00943-5.Suche in Google Scholar PubMed PubMed Central

14. Kee, S. H., Chiongson, J. B. v., Saludes, J. P., Vigneswari, S., Ramakrishna, S., Bhubalan, K. Bioconversion of agro-industry sourced biowaste into biomaterials via microbial factories – a viable domain of circular economy. Environ. Pollut. 2021, 271, 1–49; https://doi.org/10.1016/j.envpol.2020.116311.Suche in Google Scholar PubMed

15. https://www.marketsandmarkets.com/Market-Reports/biosurfactant-market-163644922.html.Suche in Google Scholar

16. Cortés-Sánchez, A. de J., Hernández-Sánchez, H., Jaramillo-Flores, M. E. Biological activity of glycolipids produced by microorganisms: new trends and possible therapeutic alternatives. Microbiol. Res. 2013, 168, 22–32; https://doi.org/10.1016/j.micres.2012.07.002.Suche in Google Scholar PubMed

17. Asselineau, J., Lanéelle, G. Mycobacterial lipids: a historical perspective. Front. Biosci.: J. Virt. Libr. 1998, 3, 164–174; https://doi.org/10.2741/a373.Suche in Google Scholar PubMed

18. Roy, A. A review on the biosurfactants: properties, types and its applications. J. Fund. Renew. Energy Appl. 2018, 08, 1–5; https://doi.org/10.4172/2090-4541.1000248.Suche in Google Scholar

19. Shao, Z. Trehalolipids. Biosurfactants. 2011, 20, 121–143; https://doi.org/10.1007/978-3-642-14490-5_5.Suche in Google Scholar

20. Lang, S., Philp, J. C. Surface-active lipids in Rhodococci. Antonie Leeuwenhoek, Int. J. Gen. Mol. Microbiol. 1998, 74, 1–3; https://doi.org/10.1023/A:1001799711799.10.1023/A:1001799711799Suche in Google Scholar PubMed

21. Birch, G. G. Trehaloses. Adv. Carbohydr. Chem. 1963, 18, 201–225; https://doi.org/10.1016/S0096-5332(08)60243-X.Suche in Google Scholar PubMed

22. Vogt Singer, M. E., Finnerty, W. R. Physiology of biosurfactant synthesis by Rhodococcus species H13-A. Can. J. Microbiol. 1990, 36, 741–745; https://doi.org/10.1139/m90-127.Suche in Google Scholar PubMed

23. Ryuichiro, K., Kazuhiro, H., Tadashi, K., Masataka, K., Tadakuni, T., Masahiko, H., Yoshitaka, T. Microbial flocculant. Part IX. Chemical structure of lipid bioflocculant produced by rhodococcus erythropolist. Biosci Biotechnol Biochem 1995, 59, 1652–1656; https://doi.org/10.1271/bbb.59.1652.Suche in Google Scholar

24. Ortiz, A., Teruel, J. A., Espuny, M. J., Marqués, A., Manresa, Á., Aranda, F. J. Interactions of a Rhodococcus sp. biosurfactant trehalose lipid with phosphatidylethanolamine membranes. Biochim. Biophys. Acta Biomembr. 2008, 1778, 2806–2813; https://doi.org/10.1016/j.bbamem.2008.07.016.Suche in Google Scholar PubMed

25. van Hamme, J. D., Ward, O. P. Physical and metabolic interactions of Pseudomonas sp. strain JA5-B45 and rhodococcus sp. strain F9-D79 during growth on crude oil and effect of a chemical surfactant on them. Appl. Environ. Microbiol. 2001, 67, 4874–4879; https://doi.org/10.1128/AEM.67.10.4874-4879.2001.Suche in Google Scholar PubMed PubMed Central

26. Tokumoto, Y., Nomura, N., Uchiyama, H., Imura, T., Morita, T., Fukuoka, T., Kitamoto, D. Structural characterization and surface-active properties of a succinoyl trehalose lipid produced by Rhodococcus sp. SD-74. J. Oleo Sci. 2009, 58, 97–102; https://doi.org/10.5650/jos.58.97.Suche in Google Scholar PubMed

27. Espuny, M. J., Egido, S., Rodón, I., Manresa, A., Mercadé, M. E. Nutritional requirements of a biosurfactant producing strain Rhodococcus sp 51T7. Biotechnol. Lett. 1996, 18, 521–526; https://doi.org/10.1007/BF00140196.Suche in Google Scholar

28. Hvidsten, I., Mjøs, S. A., Holmelid, B., Bødtker, G., Barth, T. Lipids of Dietzia sp. A14101. Part I: a study of the production dynamics of surface-active compounds. Chem. Phys. Lipids 2017, 208, 19–30; https://doi.org/10.1016/j.chemphyslip.2017.08.006.Suche in Google Scholar PubMed

29. Tuleva, B., Christova, N., Cohen, R., Antonova, D., Todorov, T., Stoineva, I. Isolation and characterization of trehalose tetraester biosurfactants from a soil strain Micrococcus luteus BN56. Process Biochem. 2009, 44, 135–141; https://doi.org/10.1016/j.procbio.2008.09.016.Suche in Google Scholar

30. Haburchak, D. R., Jeffery, B., Higbee, J. W., Everett, E. D. Infections caused by rhodochrous. Am. J. Med. 1978, 65, 298–302; https://doi.org/10.1016/0002-9343(78)90823-9.Suche in Google Scholar PubMed

31. Ram, H., Kumar Sahu, A., Said, M. S., Banpurkar, A. G., Gajbhiye, J. M., Dastager, S. G. A novel fatty alkene from marine bacteria: a thermo stable biosurfactant and its applications. J. Hazard. Mater. 2019, 380, 1–9; https://doi.org/10.1016/j.jhazmat.2019.120868.Suche in Google Scholar PubMed

32. Isoda, H., Kitamoto, D., Shinmoto, H., Matsumura, M., Nakahara, T. Microbial extracellular glycolipid induction of differentiation and inhibition of the protein kinase C activity of human promyelocytic leukemia cell line HL60. Biosci. Biotechnol. Biochem. 1997, 61, 609–614; https://doi.org/10.1271/bbb.61.609.Suche in Google Scholar PubMed

33. Leibovici, J., Hoenig, S., Pinchassov, A., Barot-Ciorbaru, R. Antitumoral activity of an immunomodulatory fraction of Nocardia opaca: mechanism of action. Int. J. Immunopharmacol. 1994, 16, 475–480; https://doi.org/10.1016/0192-0561(94)90039-6.Suche in Google Scholar PubMed

34. Tuleva, B., Christova, N., Cohen, R., Stoev, G., Stoineva, I. Production and structural elucidation of trehalose tetraesters (biosurfactants) from a novel alkanothrophic Rhodococcus wratislaviensis strain. J. Appl. Microbiol. 2008, 104, 1703–1710; https://doi.org/10.1111/j.1365-2672.2007.03680.x.Suche in Google Scholar PubMed

35. Ciapina, E. M. P., Melo, W. C., Santa Anna, L. M. M., Santos, A. S., Freire, D. M. G., Pereira, N. Biosurfactant production by Rhodococcus erythropolis grown on glycerol as sole carbon source. Appl. Biochem. Biotechnol. 2006, 131, 880–886; https://doi.org/10.1385/ABAB:131.880.10.1007/978-1-59745-268-7_72Suche in Google Scholar

36. Patil, H. I., Pratap, A. P. Production and quantitative analysis of trehalose lipid biosurfactants using high-performance liquid chromatography. J. Surfactants Deterg. 2018, 21, 553–564; https://doi.org/10.1002/jsde.12158.Suche in Google Scholar

37. Christova, N., Lang, S., Wray, V., Kaloyanov, K., Konstantinov, S., Stoineva, I. Production, structural elucidation, and in vitro antitumor activity of trehalose lipid biosurfactant from Nocardia farcinica strain. J. Microbiol. Biotechnol. 2015, 25, 439–447; https://doi.org/10.4014/jmb.1406.06025.Suche in Google Scholar PubMed

38. Syahir, H., Siti, A. A., Wan, L. W. J., Mohd, Y. A. S., Siti, A. A., Jerzy, S., Nurul, H. S., Nur, S. A. R., Nur, A. Y. Production of lipopeptide biosurfactant by a hydrocarbon-degrading antarctic rhodococcus. Int. J. Mol. Sci. 2020, 21, 1–21; https://doi.org/10.3390/ijms21176138.Suche in Google Scholar PubMed PubMed Central

39. Mutalik, S. R., Vaidya, B. K., Joshi, R. M., Desai, K. M., Nene, S. N. Use of response surface optimization for the production of biosurfactant from Rhodococcus spp. MTCC 2574. Bioresour. Technol. 2008, 99, 7875–7880; https://doi.org/10.1016/j.biortech.2008.02.027.Suche in Google Scholar PubMed

40. Pirog, T. P., Shevchuk, T. A., Voloshina, I. N., Karpenko, E. v. Production of surfactants by Rhodococcus erythropolis strain EK-1, grown on hydrophilic and hydrophobic substrates. Appl. Biochem. Microbiol. 2004, 40, 470–475; https://doi.org/10.1023/B:ABIM.0000040670.33787.5f.10.1023/B:ABIM.0000040670.33787.5fSuche in Google Scholar

41. Franzetti, A., Bestetti, G., Caredda, P., la Colla, P., Tamburini, E. Surface-active compounds and their role in the access to hydrocarbons in Gordonia strains. FEMS Microbiol. Ecol. 2008, 63, 238–248; https://doi.org/10.1111/j.1574-6941.2007.00406.x.Suche in Google Scholar PubMed

42. Nazina, T. N., Sokolova, D. S., Grigor’yan, A. A., Xue, Y. F., Belyaev, S. S., Ivanov, M. v. Production of oil-releasing compounds by microorganisms from the daqing oil field, China. Microbiology 2003, 72, 173–178; https://doi.org/10.1023/A:1023216014112.10.1023/A:1023216014112Suche in Google Scholar

43. Sadouk, Z., Hacene, H., Tazerouti, A. Biosurfactants production from low-cost substrate and degradation of diesel oil by a Rhodococcus strain. Oil Gas Sci. Technol. 2008, 63, 747–753; https://doi.org/10.2516/ogst:2008037.10.2516/ogst:2008037Suche in Google Scholar

44. Claudio, R., Andrea, F., Giuseppina, B., Paolo, C., Paolo, L. C., Manuela, P., Simona, S., Elena, T. Isolation and characterization of surface-active compound-producing bacteria from hydrocarbon-contaminated environments. Int Biodeterior Biodegradation 2009, 63, 934–942; https://doi.org/10.1016/j.ibiod.2009.05.003.Suche in Google Scholar

45. Md, F. Biosurfactant: production and application. J. Pet. Environ. Biotechnol. 2012, 03, 1–5; https://doi.org/10.4172/2157-7463.1000124.Suche in Google Scholar

46. Yalaoui-Guellal, D., Fella-Temzi, S., Djafri-Dib, S., Brahmi, F., Banat, I. M., Madani, K. Biodegradation potential of crude petroleum by hydrocarbonoclastic bacteria isolated from Soummam wadi sediment and chemical-biological proprieties of their biosurfactants. J. Pet. Sci. Eng. 2020, 184, 1–30; https://doi.org/10.1016/j.petrol.2019.106554.Suche in Google Scholar

47. Luong, T. M., et al.. Characterization of biosurfactants produced by the oil-degrading bacterium Rhodococcus erythropolis S67 at low temperature. World J. Microbiol. Biotechnol. 2018, 34, 20; https://doi.org/10.1007/s11274-017-2401-8.Suche in Google Scholar PubMed

48. Wang, Y., Nie, M., Diwu, Z., Lei, Y., Li, H., Bai, X. Characterization of trehalose lipids produced by a unique environmental isolate bacterium Rhodococcus qingshengii strain FF. J. Appl. Microbiol. 2019, 127, 1442–1453; https://doi.org/10.1111/jam.14390.Suche in Google Scholar PubMed

49. White, D. A., Hird, L. C., Ali, S. T. Production and characterization of a trehalolipid biosurfactant produced by the novel marine bacterium Rhodococcus sp., strain PML026. J. Appl. Microbiol. 2013, 115, 744–755; https://doi.org/10.1111/jam.12287.Suche in Google Scholar PubMed

50. Uchida, Y., Misawa, S., Nakahara, T., Tabuchi, T. Factors affecting the production of succinoyl trehalose lipids by Rhodococcus erythropolis SD-74 grown on n-alkanes. Agric. Biol. Chem. 1989, 53, 765–769; https://doi.org/10.1271/bbb1961.53.765.Suche in Google Scholar

51. Li, Y. H., Liu, B., Zhao, Z. B., Bai, F. W. Optimization of culture conditions for lipid production by rhodosporidium toruloides. Chin J Biotechnol 2006, 22, 650–656; https://doi.org/10.1016/S1872-2075(06)60050-2.Suche in Google Scholar

52. Johannes, H. K., Claudia, M.-G., Boris, K., Axel, K., Raphael, H., Frank, K., Marius, H., Victor, W., Burkhard, L., Gerald, B.-W., Siegmund, L., Christoph, S., Rudolf, H. Trehalose lipid biosurfactants produced by the actinomycetes Tsukamurella spumae and T. pseudospumae. Appl. Microbiol. Biotechnol. 2014, 98, 8905–8915; https://doi.org/10.1007/s00253-014-5972-4.Suche in Google Scholar PubMed

53. Espuny, M. J., Egjido, S., Mercadè, M. E., Manresa, A. Characterization of trehalose tetraester produced by a waste lube oil degrader Rhodococcus sp. 51T7. Toxicol. Environ. Chem. 1995, 48, 83–88; https://doi.org/10.1080/02772249509358154.Suche in Google Scholar

54. Banat, I. M., Makkar, R. S., Cameotra, S. S. Potential commercial applications of microbial surfactants. Appl. Microbiol. Biotechnol. 2000, 53, 495–508; https://doi.org/10.1007/s002530051648.Suche in Google Scholar PubMed

55. Oberbremer, A., Müller-Hurtig, R., Wagner, F. Effect of the addition of microbial surfactants on hydrocarbon degradation in a soil population in a stirred reactor. Appl. Microbiol. Biotechnol. 1990, 32, 485–489; https://doi.org/10.1007/BF00903788.Suche in Google Scholar PubMed

56. Christofi, N., Ivshina, I. B. Microbial surfactants and their use in field studies of soil remediation. J. Appl. Microbiol. 2002, 93, 915–921; https://doi.org/10.1046/j.1365-2672.2002.01774.x.Suche in Google Scholar PubMed

57. Ivshina, I. B., Kuyukina, M. S., Philp, J. C., Christofi, N. Oil desorption from mineral and organic materials using biosurfactant complexes produced by Rhodococcus species. World J. Microbiol. Biotechnol. 1998, 14, 711–717; https://doi.org/10.1023/A:1008885309221.10.1023/A:1008885309221Suche in Google Scholar

58. Ermolenko, Z. M., Kholodenko, V. P., Chugunov, V. A., Zhirkova, N. A., Rasulova, G. E. A mycobacterial strain isolated from the oil of the ukhtinskoe oil field: identification and degradative properties. Microbiology 1997, 66, 650–654.Suche in Google Scholar

59. van Dyke, M. I., Gulley, S. L., Lee, H., Trevors, J. T. Evaluation of microbial surfactants for recovery of hydrophobic pollutants from soil. J. Ind. Microbiol. 1993, 11, 163–170; https://doi.org/10.1007/BF01583718.Suche in Google Scholar

60. Park, A. J., Cha, D. K., Holsen, T. M. Enhancing solubilization of sparingly soluble organic compounds by biosurfactants produced by Nocardia erythropolis. Water Environ. Res. 1998, 70, 351–355; https://doi.org/10.2175/106143098x124984.Suche in Google Scholar

61. Chang, J. S., Radosevich, M., Jin, Y., Cha, D. K. Enhancement of phenanthrene solubilization and biodegradation by trehalose lipid biosurfactants. Environ. Toxicol. Chem. 2004, 23, 2816–2822; https://doi.org/10.1897/03-608.1.Suche in Google Scholar PubMed

62. Peng, F., Liu, Z., Wang, L., Shao, Z. An oil-degrading bacterium: rhodococcus erythropolis strain 3C-9 and its biosurfactants. J. Appl. Microbiol. 2007, 102, 1603–1611; https://doi.org/10.1111/j.1365-2672.2006.03267.x.Suche in Google Scholar PubMed

63. Franzetti, A., et al.. Potential applications of surface-active compounds by Gordonia sp. strain BS29 in soil remediation technologies. Chemosphere 2009, 75, 801–807; https://doi.org/10.1016/j.chemosphere.2008.12.052.Suche in Google Scholar PubMed

64. Noordman, W. H., Janssen, D. B. Rhamnolipid stimulates uptake of hydrophobic compounds by Pseudomonas aeruginosa. Appl. Environ. Microbiol. 2002, 68, 4502–4508; https://doi.org/10.1128/AEM.68.9.4502-4508.2002.Suche in Google Scholar PubMed PubMed Central

65. Poremba, P. K., Lang, S., Wagner, F., Munstermann, B. Studies on environmental compatibility: influence of (bio)surfactants on marine microbial and enzymatic systems. In: Proceedings of the International Symposium on Soil Decontamination Using Biological Processes p. 414–420 6–9 December, 1992. Karlsruhe, Germany. Frankfurt: Dechema; 1992.Suche in Google Scholar

66. Kanga, S. A., Bonner, J. S., Page, C. A., Mills, M. A., Autenrieth, R. L. Solubilization of naphthalene and methyl-substituted naphthalenes from crude oil using biosurfactants. Environ. Sci. Technol. 1997, 31, 556–561; https://doi.org/10.1021/es9604370.Suche in Google Scholar

67. Desai, J. D., Banat, I. M. Microbial production of surfactants and their commercial potential. Microbiol. Mol. Biol. Rev. 1997, 61, 47–64; https://doi.org/10.1128/mmbr.61.1.47-64.1997.Suche in Google Scholar PubMed PubMed Central

68. Singh, A., van Hamme, J. D., Ward, O. P. Surfactants in microbiology and biotechnology: Part 2. Application aspects. Biotechnol. Adv. 2007, 25, 99–121; https://doi.org/10.1016/j.biotechadv.2006.10.004.Suche in Google Scholar PubMed

69. Rapp, P., Bock, H., Wray, V., Wagner, F. Formation, isolation and characterization of trehalose dimycolates from Rhodococcus erythropolis grown on n-alkanes. J. Gen. Microbiol. 1979, 115, 491–503; https://doi.org/10.1099/00221287-115-2-491.Suche in Google Scholar

70. Finnerty, W. R., Singer, M. E. Microbial biosurfactant – physiology, biochemistry and applications. Dev. Ind. Microbiol. 1984, 25, 31–40.Suche in Google Scholar

71. Haddadin, M. S. Y., Abou Arqoub, A. A., Abu Reesh, I., Haddadin, J. Kinetics of hydrocarbon extraction from oil shale using biosurfactant producing bacteria. Energy Convers. Manag. 2009, 50, 983–990; https://doi.org/10.1016/j.enconman.2008.12.015.Suche in Google Scholar

72. Kuyukina, M. S., Ivshina, I. B., Makarov, S. O., Litvinenko, L. v., Cunningham, C. J., Philp, J. C. Effect of biosurfactants on crude oil desorption and mobilization in a soil system. Environ. Int. 2005, 31, 155–161; https://doi.org/10.1016/j.envint.2004.09.009.Suche in Google Scholar PubMed

73. Kosaric, N., Cairns, W. L., Gray, N. C. C. Microbial de-emulsifiers. Biosurfact. Biotechnol. 2017, 25, 247–327; https://doi.org/10.1201/9781315138428-10.Suche in Google Scholar

74. Rodrigues, L., Banat, I. M., Teixeira, J., Oliveira, R. Biosurfactants: potential applications in medicine. J. Antimicrob. Chemother. 2006, 57, 609–618; https://doi.org/10.1093/jac/dkl024.Suche in Google Scholar PubMed

75. Marqués, A. M., Pinazo, A., Farfan, M., Aranda, F. J., Teruel, J. A., Ortiz, A., Espuny, M. J. The physicochemical properties and chemical composition of trehalose lipids produced by Rhodococcus erythropolis 51T7. Chem. Phys. Lipids 2009, 158, 110–117; https://doi.org/10.1016/j.chemphyslip.2009.01.001.Suche in Google Scholar PubMed

76. Toshihiko, S., Xiaoxian, Z., Yoko, W., Miki, S., Nobuhiko, N., Tadaatsu, N., Akemi, S., Yoshiro, K., Chunyuan, J., Takehide, M., Kazunari, K. Y. Induction of the differentiation of human HL-60 promyelocytic leukemia cell line by succinoyl trehalose lipids. Cytotechnology 2000, 33, 259–264; https://doi.org/10.1023/a:1008137817944.10.1023/A:1008137817944Suche in Google Scholar PubMed PubMed Central

77. Natsuhara, Y., Oka, S., Kaneda, K., Kato, Y., Yano, I. Parallel antitumor, granuloma-forming and tumor-necrosis-factor-priming activities of mycoloyl glycolipids from Nocardia rubra that differ in carbohydrate moiety: structure-activity relationships. Cancer Immunol. Immunother. 1990, 31, 99–106; https://doi.org/10.1007/BF01742373.Suche in Google Scholar PubMed

78. Orbach-Arbouys, S., Tenu, J. P., Petit, J. F. Enhancement of in vitro and in vivo antitumor activity by cord factor (6-6′-dimycolate of trehalose) administered suspended in saline. Int. Arch. Allergy Immunol. 1983, 71, 67–73; https://doi.org/10.1159/000233364.Suche in Google Scholar PubMed

79. Parant, M., et al.. Enhancement of nonspecific immunity to bacterial infection by cord factor (6,6′ trehalose dimycolate). J. Infect. Dis. 1977, 135, 771–777; https://doi.org/10.1093/infdis/135.5.771.Suche in Google Scholar PubMed

80. Bekierkunst, A., Levij, I. S., Yarkoni, E., Vilkas, E., Adam, A., Lederer, E. Granuloma formation induced in mice by chemically defined mycobacterial fractions. J. Bacteriol. 1969, 100, 95–102; https://doi.org/10.1128/jb.100.1.95-102.1969.Suche in Google Scholar PubMed PubMed Central

81. Yano, I., Tomiyasu, I., Kitabatake, S., Kaneda, K. Granuloma forming activity of mycolic acid-containing glycolipids in nocardia and related taxa. Acta Leprologica 1984, 95, 2–4.Suche in Google Scholar

82. Grand‐Perret, T., Lepoivre, M., Petit, J.-F., Lemaire, G. Macrophage activation by trehalose dimycolate Requirement for an expression signal in vitro for antitumoral activity; biochemical markers distinguishing primed and fully activated macrophages. Eur. J. Immunol. 1986, 16, 332–338; https://doi.org/10.1002/eji.1830160403.Suche in Google Scholar PubMed

83. Mohamed, C., Karine, A., Anne, L., Jean-Francois, P., Christine, H., Virginie, P., Nicolas, B., Richard, C., Mamadou, D. Priming and activation of mouse macrophages by trehalose 6,6â€2-dicorynomycolate vesicles from Corynebacterium glutamicum. FEMS Immunol. Med. Microbiol. 2002, 32, 141–147; https://doi.org/10.1111/j.1574-695X.2002.tb00546.x.Suche in Google Scholar PubMed

84. Sakaguchi, I., Ikeda, N., Nakayama, M., Kato, Y., Yano, I., Kaneda, K. Trehalose 6,6′-dimycolate (cord factor) enhances neovascularization through vascular endothelial growth factor production by neutrophils and macrophages. Infect. Immun. 2000, 68, 2043–2052; https://doi.org/10.1128/IAI.68.4.2043-2052.2000.Suche in Google Scholar PubMed PubMed Central

85. Ueda, S., et al.. Structure-activity relationship of mycoloyl glycolipids derived from Rhodococcus sp. 4306. Microb. Pathog. 2001, 30, 91–99; https://doi.org/10.1006/mpat.2000.0413.Suche in Google Scholar PubMed

86. Kuyukina, M. S., Ivshina, I. B., Gein, S. v., Baeva, T. A., Chereshnev, V. A. In vitro immunomodulating activity of biosurfactant glycolipid complex from Rhodococcus ruber. Bull. Exp. Biol. Med. 2007, 144, 326–330; https://doi.org/10.1007/s10517-007-0324-3.Suche in Google Scholar

87. Vollbrecht, E., Rau, U., Lang, S. Microbial conversion of vegetable oils into surface-active di-tri-and tetrasaccharide lipids (biosurfactants) by the bacterial strain Tsukamurella spec. Lipid – Fett 1999, 101, 389–394; https://doi.org/10.1002/(sici)1521-4133(199910)101:10<389::aid-lipi389>3.3.co;2-0.10.1002/(SICI)1521-4133(199910)101:10<389::AID-LIPI389>3.3.CO;2-0Suche in Google Scholar

88. Ortiz, A., Teruel, J. A., Espuny, M. J., Marqués, A., Manresa, Á., Aranda, F. J. Interactions of a bacterial biosurfactant trehalose lipid with phosphatidylserine membranes. Chem. Phys. Lipids 2009, 158, 46–53; https://doi.org/10.1016/j.chemphyslip.2008.11.001.Suche in Google Scholar

89. Kurozuka, A., Onishi, S., Nagano, T., Yamaguchi, K., Suzuki, T., Minami, H. Emulsion polymerization with a biosurfactant. Langmuir 2017, 33, 5814–5818; https://doi.org/10.1021/acs.langmuir.7b00851.Suche in Google Scholar

90. Das, M., Patowary, K., Vidya, R., Malipeddi, H. Microemulsion synthesis of silver nanoparticles using biosurfactant extracted from Pseudomonas aeruginosa MKVIT3 strain and comparison of their antimicrobial and cytotoxic activities. IET Nanobiotechnol 2016, 10, 411–418; https://doi.org/10.1049/iet-nbt.2015.0119.Suche in Google Scholar

91. Paniagua-Michel, J. de J., Olmos-Soto, J., Morales-Guerrero, E. R. Algal and microbial exopolysaccharides: new insights as biosurfactants and bioemulsifiers. Adv. Food Nutr. Res. 2014, 73, 221–257; https://doi.org/10.1016/B978-0-12-800268-1.00011-1.Suche in Google Scholar

92. Takahashi, M., Morita, T., Fukuoka, T., Imura, T., Kitamoto, D. Glycolipid biosurfactants, mannosylerythritol lipids, show antioxidant and protective effects against H2O 2-induced oxidative stress in cultured human skin fibroblasts. J. Oleo Sci. 2012, 61, 457–464; https://doi.org/10.5650/jos.61.457.Suche in Google Scholar

93. Kitagawa, M., et al.. Skin Care Cosmetic and Skin and Agent for Preventing Skin Roughness Containing Biosurfactants, 2006, 1–19.Suche in Google Scholar

94. Allef, P., Schilling, M., Hatting, C. Aqueous Hair and Skin Cleaning Compositions Comprising Biosurfactants. U.S. Patent 20140349902 A1, 2014, pp. 1–22.Suche in Google Scholar

95. Ribeiro, B. G., Guerra, J. M. C., Sarubbo, L. A. Biosurfactants: production and application prospects in the food industry. Biotechnol. Prog. 2020, 36, 1–39; https://doi.org/10.1002/btpr.3030.Suche in Google Scholar

96. Wendisch, V. F., Eberhardt, D., Herbst, M., Vold, K. J. “Biotechnological production of amino acids and nucleotides,” Biotechnol. Prod. Nat. Ingr. Food. Ind. 2016, 60–163; https://doi.org/10.2174/97816810826531160101.Suche in Google Scholar

97. Pascual-Villalobos, M. J., Guirao, P., Díaz-Baños, F. G., Cantó-Tejero, M., Villora, G. Oil in water nanoemulsion formulations of botanical active substances. Nano-Biopest. Today Future Perspect. 2019, 223–247; https://doi.org/10.1016/B978-0-12-815829-6.00009-7.Suche in Google Scholar

98. Egolf, A., Hartmann, C., Siegrist, M. When evolution works against the future: disgust’s contributions to the acceptance of new food technologies. Risk Analysis 2019, 39, 1–14; https://doi.org/10.1111/risa.13279.Suche in Google Scholar PubMed PubMed Central

99. Nitschke, M., Silva, S. S. e. Recent food applications of microbial surfactants. Crit. Rev. Food Sci. Nutr. 2018, 58, 631–638; https://doi.org/10.1080/10408398.2016.1208635.Suche in Google Scholar PubMed

Received: 2023-04-06
Accepted: 2023-07-21
Published Online: 2024-01-08
Published in Print: 2024-01-29

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 11.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/tsd-2023-2521/html
Button zum nach oben scrollen