Abstract
The rise of big digital data is changing the framework within which linguists, sociologists, anthropologists, and other researchers are working. Semiotics is not spared by this paradigm shift. A data-driven computational semiotics is the study with an intensive use of computational methods of patterns in human-created contents related to semiotic phenomena. One of the most promising frameworks in this research program is the Semantic Vector Space (SVS) models and their methods. The objective of this article is to contribute to the exploration of the SVS for a computational semiotics by showing what types of semiotic analysis can be accomplished within this framework. The study is applied to a unique body of digitized artworks. We conducted three short experiments in which we explore three types of semiotic analysis: paradigmatic analysis, componential analysis, and topic modelling analysis. The results reported show that the SVS constitutes a powerful framework within which various types of semiotic analysis can be carried out.
Appendix: Five nearest artworks of each topic in the semantic vector space
References
Arora, Ravneet Singh. 2012. Towards automated classification of fine-art painting style: A comparative study. Rutgers University PhD dissertation.Search in Google Scholar
Arthur, D. & S. Vassilvitskii. 2007. k-means++: The advantages of careful seeding. Proceedings of the eighteenth annual ACM-SIAM symposium on discrete algorithms, 1027–1035. Philadelphia: Society for Industrial and Applied Mathematics.Search in Google Scholar
Bar, Yaniv, Noga Levy & Lior Wolf. 2014. Classification of artistic styles using binarized features derived from a deep neural network. Workshop at the European conference on computer vision, 71–84. Berlin: Springer.10.1007/978-3-319-16178-5_5Search in Google Scholar
Baroni, Marco & Alessandro Lenci. 2010. Distributional memory: A general framework for corpus-based semantics. Computational Linguistics 36(4). 673–721.10.1162/coli_a_00016Search in Google Scholar
Blei, David M. & John D. Lafferty. 2009. Topic models. Text Mining 10(71). 34.10.1201/9781420059458.ch4Search in Google Scholar
Bordag, Stefan & Gerhard Heyer. 2007. A structuralist framework for quantitative linguistics. In Alexander Mehler & Reinhard Köhler (eds.), Aspects of automatic text analysis, 171–189. Berlin: Springer.10.1007/978-3-540-37522-7_8Search in Google Scholar
Bouma, Gerlof. 2009. Normalized (pointwise) mutual information in collocation extraction. In C. Chiarcos, R. Eckart de Castilho & M. Stede (eds.), Proceedings of Biennial GSCL Conference, 31–40. Tübingen: Gunter Narr.Search in Google Scholar
Burgess, Curt. 2000. Theory and operational definitions in computational memory models: A response to Glenberg and Robertson. Journal of Memory and Language 43(3). 402–408.10.1006/jmla.2000.2715Search in Google Scholar
Burgess, Curt, Kay Livesay & Kevin Lund. 1998. Explorations in context space: Words, sentences, discourse. Discourse Processes 25(2–3). 211–257.10.1080/01638539809545027Search in Google Scholar
Carneiro, Gustavo, Nuno Pinho Da Silva, Alessio Del Bue & João Paulo Costeira. 2012. Artistic image classification: An analysis on the Printart database. In A. Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato & C. Schmid (eds.), Computer vision – ECCV 2012 (Lecture Notes in Computer Science 7575), 143–157. Berlin: Springer.10.1007/978-3-642-33765-9_11Search in Google Scholar
Crowley, Elliot J. & Andrew Zisserman. 2014. The state of the art: Object retrieval in paintings using discriminative regions. In M. Valstar, A. French & T. Pridmore (eds.), Proceedings of the British machine vision conference. Birmingham: BMVA Press.10.5244/C.28.38Search in Google Scholar
De Souza, Clarisse Sieckenius. 2005. The semiotic engineering of human-computer interaction. Cambridge, MA: MIT Press.10.7551/mitpress/6175.001.0001Search in Google Scholar
Dunning, Ted. 1993. Accurate methods for the statistics of surprise and coincidence. Journal Computational Linguistics 19(1). 61–74.Search in Google Scholar
Erk, Katrin. 2009. Supporting inferences in semantic space: Representing words as regions. Proceedings of the eighth international conference on computational semantics, 104–115. Morristown: Association for Computational Linguistics.10.3115/1693756.1693769Search in Google Scholar
Evans, James A. & Pedro Aceves. 2016. Machine translation: Mining text for social theory. Annual Review of Sociology 42. 21–50.10.1146/annurev-soc-081715-074206Search in Google Scholar
Firth, J. R. 1957. A synopsis of linguistic theory, 1930–1955. Special issue, Studies in Linguistic Analysis, 1–32.Search in Google Scholar
Floridi, Luciano. 1999. Philosophy and computing: An introduction. London: Psychology Press.Search in Google Scholar
Gärdenfors, P. 2000. Conceptual spaces: The geometry of thought. Cambridge, MA: MIT Press.10.7551/mitpress/2076.001.0001Search in Google Scholar
Gärdenfors, P. 2014. The geometry of meaning: Semantics based on conceptual spaces. Cambridge, MA: MIT Press.10.7551/mitpress/9629.001.0001Search in Google Scholar
Graham, Daniel J., Jay D. Friedenberg, Daniel N. Rockmore & David J. Field. 2010. Mapping the similarity space of paintings: Image statistics and visual perception. Visual Cognition 18(4). 559–573.10.1080/13506280902934454Search in Google Scholar
Greimas, Algirdas Julien, Frank Collins & Paul Perron. 1989. Figurative semiotics and the semiotics of the plastic arts. New Literary History 20(3). 627–649.10.2307/469358Search in Google Scholar
Griffiths, Thomas L., Mark Steyvers & Joshua B. Tenenbaum. 2007. Topics in semantic representation. Psychological Review 114(2). 211–244.10.1037/0033-295X.114.2.211Search in Google Scholar
Groupe Mu. 1992. Traité du signe visuel: Pour une rhétorique de l’image. Paris: Seuil.Search in Google Scholar
Hamilton, William L., Jure Leskovec & Dan Jurafsky. 2016. Diachronic word embeddings reveal statistical laws of semantic change. In A. van Den Bosch, K. Erk & N. A. Smith (eds.), Proceedings of the 54th annual meeting of the Association for Computational Linguistics, vol. 1, 1489–1501. Stroudsbourg, PA: Association for Computational Linguistics.10.18653/v1/P16-1141Search in Google Scholar
Hare, Jonathon S., Paul H. Lewis, Peter G. B. Enser, Christine J. Sandom, et al. 2006. Mind the gap: Another look at the problem of the semantic gap in image retrieval. In Ei Y. Chang (ed.), Proceedings of multimedia content analysis, management, and retrieval 2006, 75–86. San Jose, CA: SPIE.10.1117/12.647755Search in Google Scholar
Harris, Zellig S. 1951. Methods in structural linguistics. Chicago & London: University of Chicago Press.Search in Google Scholar
Harris, Zellig S. 1954. Distributional structure. Word 10(23). 146–162.10.1080/00437956.1954.11659520Search in Google Scholar
He, Kaiming, Xiangyu Zhang, Shaoqing Ren & Jian Sun. 2016. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition, 770–778.10.1109/CVPR.2016.90Search in Google Scholar
Hébert, L. 2013. Magritte: Toutes les œuvres. tous les thèmeshttp://www.magrittedb.com/ (accessed16 March 2016).Search in Google Scholar
Hébert, L. & Éric Trudel. 2013. Analyse des images. http://magrittedb.com (accessed 16 March 2016).Search in Google Scholar
Johnson Jr., C Richard, Ella Hendriks, Igor J. Berezhnoy, Eugene Brevdo, Shannon M. Hughes, Ingrid Daubechies, Jia Li, Eric Postma & James Z. Wang. 2008. Image processing for artist identification. Signal Processing Magazine, IEEE 25(4). 37–48.10.1109/MSP.2008.923513Search in Google Scholar
Kell, Douglas B. & Stephen G. Oliver. 2004. Here is the evidence, now what is the hypothesis? The complementary roles of inductive and hypothesis-driven science in the post-genomic era. Bioessays 26(1). 99–105.10.1002/bies.10385Search in Google Scholar
Kelling, Steve, Wesley M. Hochachka, Daniel Fink, Mirek Riedewald, Rich Caruana, Grant Ballard & Giles Hooker. 2009. Data-intensive science: A new paradigm for biodiversity studies. BioScience 59(7). 613–620.10.1525/bio.2009.59.7.12Search in Google Scholar
Khan, Fahad Shahbaz, Shida Beigpour, Joost van de Weijer & Michael Felsberg. 2014. Painting-91: A large scale database for computational painting categorization. Machine Vision and Applications 25(6). 1385–1397.10.1007/s00138-014-0621-6Search in Google Scholar
Kiela, Douwe & Stephen Clark. 2014. A systematic study of semantic vector space model parameters. Proceedings of the 2nd Workshop on Continuous Vector Space Models and their Compositionality (CVSC) at EACL, 21–30.10.3115/v1/W14-1503Search in Google Scholar
Kitchin, Rob. 2014. Big data, new epistemologies and paradigm shifts. Big Data & Society 1(1). https://journals.sagepub.com/doi/full/10.1177/2053951714528481.10.1177/2053951714528481Search in Google Scholar
Krizhevsky, Alex, Ilya Sutskever & Geoffrey E. Hinton. 2012. Imagenet classification with deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou & K. Q. Weinberger (eds.), Advances in neural information processing systems, vol. 25, 1097–1105. Red Hook, NY: Curran.Search in Google Scholar
Landauer, Thomas K., Peter W. Foltz & Darrell Laham. 1998. An introduction to latent semantic analysis. Discourse Processes 25(2–3). 259–284.10.1080/01638539809545028Search in Google Scholar
Landauer, T. K. & S. T. Dumais. 1997. A solution to Plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological Review 104(2). 211–240.10.1037/0033-295X.104.2.211Search in Google Scholar
Larsen, Kai R. & David E. Monarchi. 2004. A mathematical approach to categorization and labeling of qualitative data: The latent categorization method. Sociological Methodology 34(1). 349–392.10.1111/j.0081-1750.2004.00156.xSearch in Google Scholar
Lemaire, Benoît & Guy Denhière. 2006. Effects of high-order co-occurrences on word semantic similarity. Current Psychology Letters: Behaviour, Brain & Cognition 18(1). https://journals.openedition.org/cpl/471.10.4000/cpl.471Search in Google Scholar
Leopold, Edda. 2005. On semantic spaces. LDV Forum 20. 63–86.10.21248/jlcl.20.2005.69Search in Google Scholar
Li, Jia & James Z. Wang. 2004. Studying digital imagery of ancient paintings by mixtures of stochastic models. Image Processing, IEEE Transactions 13(3). 340–353.10.1109/TIP.2003.821349Search in Google Scholar
Liu, Ying, Dengsheng Zhang, Lu Guojun & Ma Wei-Ying. 2007. A survey of content-based image retrieval with high-level semantics. Pattern Recognition 40(1). 262–282.10.1016/j.patcog.2006.04.045Search in Google Scholar
Lombardi, Thomas Edward. 2005. The classification of style in fine-art painting. Pace University PhD dissertation.Search in Google Scholar
Lu, Qin. 2015. When similarity becomes opposition: Synonyms and antonyms discrimination in DSMs. Italian Journal on Computational Linguistics 1(1).10.4000/ijcol.311Search in Google Scholar
Lund, Kevin & Curt Burgess. 1996. Producing high-dimensional semantic spaces from lexical co-occurrence. Behavior Research Methods, Instruments, & Computers 28(2). 203–208.10.3758/BF03204766Search in Google Scholar
Manning, C. & H. Schütze. 1999. Foundations of statistical natural language processing. Cambridge, MA: MIT Press.Search in Google Scholar
Mayaffre, Damon. 2008. De l’occurrence à l’isotopie: Les co-occurrences en lexicométrie. Syntaxe & Sémantique 9. 53–72.10.3917/ss.009.0053Search in Google Scholar
Mehler, Alexander. 2003. Methodological aspects of computational semiotics. SEED Journal 3(3). 71–80.Search in Google Scholar
Meunier, Jean-Guy. 1989. Artificial intelligence and sign theory. Semiotica 77(1/3). 43–64.10.1515/semi.1989.77.1-3.43Search in Google Scholar
Meunier, J. G. 2014. Humanités numériques ou computationnelles: Enjeux herméneutiques. Sens Public. http://www.sens-public.org/spip.php?article1121&lang=fr (accessed 17 June 2019).10.7202/1043651arSearch in Google Scholar
Meunier, J. G. 2017. Vers une sémiotique computationnelle edited by S. Badir, I. Darrault, L. Hébert, P. Michelucci, and É. Trudel. Applied Semiotics/Sémiotique Appliquée 16.Search in Google Scholar
Michel, J. B., Yuan Kui Shen, Aviva Presser Aiden, Adrian Veres, Matthew K. Gray, The Google Books Team, Joseph P. Pickett, Dale Hoiberg, Dan Clancy, Peter Norvig, Jon Orwant, Steven Pinker, Martin A. Nowak & Erez Lieberman Aiden. 2011. Quantitative analysis of culture using millions of digitized books. Science 331(6014). 176–182.10.1126/science.1199644Search in Google Scholar
Mikolov, Tomas, Wen-tau Yih & Geoffrey Zweig. 2013. Linguistic regularities in continuous space word representations. Proceedings of NAACL-HLT, 746–751.Search in Google Scholar
Mimno, David. 2012. Computational historiography: Data mining in a century of classics journals. Journal on Computing and Cultural Heritage 5(1). 1–19.10.1145/2160165.2160168Search in Google Scholar
Mitchell, Jeff & Mirella Lapata. 2010. Composition in distributional models of semantics. Cognitive Science 34(8). 1388–1429.10.1111/j.1551-6709.2010.01106.xSearch in Google Scholar
Nadin, Mihai. 2011. Information and semiotic processes the semiotics of computation. Cybernetics & Human Knowing 18(1–2). 153–175.Search in Google Scholar
Neuman, Yair, Yochai Cohen & Dan Assaf. 2015. How do we understand the meaning of connotations? A cognitive computational model. Semiotica 205(1/4). 1–16.10.1515/sem-2015-0013Search in Google Scholar
Osgood, Charles E. 1952. The nature and measurement of meaning. Psychological Bulletin 49(3). 197–237.10.1037/h0055737Search in Google Scholar
Osgood, Charles E. 1964. Semantic differential technique in the comparative study of cultures. American Anthropologist 66(3). 171–200.10.1525/aa.1964.66.3.02a00880Search in Google Scholar
Osgood, Charles Egerton, George John Suci & Percy H. Tannenbaum. 1957. The measurement of meaning. Urbana, IL: University of Illinois Press.Search in Google Scholar
Pankratius, Victor, Li Justin, Michael Gowanlock & David M. Blair. 2016. Computer-aided discovery: Toward scientific insight generation with machine support. IEEE Intelligent Systems 31(4). 3–10.10.1109/MIS.2016.60Search in Google Scholar
Pincemin, Bénédicte. 1999. Sémantique interprétative et analyses automatiques de textes: Que deviennent les sèmes? Sémiotiques 17. 71–120.Search in Google Scholar
Rastier, F. 1996. La sémantique des textes: Concepts et applications. Hermes 9(16). 15–37.10.7146/hjlcb.v9i16.25382Search in Google Scholar
Rastier, F. 2011. La mesure et le grain: Sémantique de corpus. Paris: Honoré Champion.Search in Google Scholar
Rieger, Burghard B. 1981. Feasible fuzzy semantics: On some problems of how to handle word meaning empirically. In H. J. Eikmeyer & H. Rieser (eds.), Words, worlds, and contexts: New approaches in word semantics (Research in Text Theory 6), 193–209. Berlin: de Gruyter.Search in Google Scholar
Rieger, Burghard B. 1983. Clusters in semantic space. Actes Du Congrès International Informatique et Science Humaines. 805–814.Search in Google Scholar
Rieger, Burghard B. 1989. Distributed semantic representation of word meanings. Workshop on parallel processing: Logic, organization, and technology, 243–273. Berlin: Springer.10.1007/3-540-55027-5_15Search in Google Scholar
Rieger, Burghard B. 1992. Fuzzy computational semantics. Fuzzy systems: Proceedings of the Japanese-German-Center symposium, series, vol. 3, 197–217. Berlin: Publications of the JGCB.Search in Google Scholar
Rieger, Burghard B. 1999. Semiotics and computational linguistics. In L. A. Zadeh (ed.), Computing with words in information/intelligent systems, vol. 1, 93–118. Berlin: Springer.10.1007/978-3-7908-1873-4_5Search in Google Scholar
Rousseeuw, Peter J. 1987. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Computational and Applied Mathematics 20. 53–65.10.1016/0377-0427(87)90125-7Search in Google Scholar
Sahlgren, M. 2006. The word-space model: Using distributional analysis to represent syntagmatic and paradigmatic relations between words in high-dimensional vector spaces. University of Stockholm PhD dissertation.Search in Google Scholar
Sahlgren, Magnus. 2005. An introduction to random indexing. Methods and applications of semantic indexing workshop at the 7th international conference on terminology and knowledge engineering, TKE, vol. 5.Search in Google Scholar
Sahlgren, Magnus. 2008. The distributional hypothesis. Italian Journal of Linguistics 20(1). 33–54.Search in Google Scholar
Saleh, Babak & Ahmed Elgammal. 2016. Large-scale classification of fine-art paintings: Learning the right metric on the right feature. Digital Art History 2.Search in Google Scholar
Santus, Enrico, Alessandro Lenci, Lu Qin & Sabine Schulte Im Walde. 2014. Chasing hypernyms in vector spaces with entropy. Proceedings of the 14th conference of the European chapter of the Association for Computational Linguistics, vol. 2, 38–42.10.3115/v1/E14-4008Search in Google Scholar
Schütze, Hinrich & Jan Pedersen. 1993. A vector model for syntagmatic and paradigmatic relatedness. Proceedings of the 9th annual conference of the UW centre for the new OED and text research, 104–113.Search in Google Scholar
Shamir, Lior. 2012. Computer analysis reveals similarities between the artistic styles of Van Gogh and Pollock. Leonardo 45(2). 149–154.10.1162/LEON_a_00281Search in Google Scholar
Shamir, Lior. 2015. What makes a Pollock Pollock: A machine vision approach. International Journal of Arts and Technology 8(1). 1–10.10.1504/IJART.2015.067389Search in Google Scholar
Shamir, Lior & Jane A. Tarakhovsky. 2012. Computer analysis of art. Journal on Computing and Cultural Heritage 5(2). 7.10.1145/2307723.2307726Search in Google Scholar
Shen, Jialie. 2009. Stochastic modeling Western paintings for effective classification. Pattern Recognition 42(2). 293–301.10.1016/j.patcog.2008.04.016Search in Google Scholar
Shutova, Ekaterina. 2010. Models of metaphor in NLP. Proceedings of the 48th annual meeting of the association for computational linguistics, 688–697. Morristown, NJ: Association for Computational Linguistics.Search in Google Scholar
Smeulders, Arnold W. M., Marcel Worring, Simone Santini, Amarnath Gupta & Ramesh Jain. 2000. Content-based image retrieval at the end of the early years. Pattern Analysis and Machine Intelligence, IEEE Transactions 22(12). 1349–1380.10.1109/34.895972Search in Google Scholar
Stork, David G. 2009. Computer vision and computer graphics analysis of paintings and drawings: An introduction to the literature. In Gerald Sommer, Kostas Daniilidis & Josef Pauli (eds.), Computer analysis of images and patterns, 9–24. Berlin: Springer.10.1007/978-3-642-03767-2_2Search in Google Scholar
Sylvestre, David (ed.). 1997. René Magritte: Catalogue raisonné. Anvers: Fonds Mercator.Search in Google Scholar
Tanaka-Ishii, Kumiko. 2010. Semiotics of programming. Cambridge, MA: Cambridge University Press.Search in Google Scholar
Tanaka-Ishii, Kumiko. 2015. Semiotics of computing: Filling the gap between humanity and mechanical inhumanity. In Peter Pericles Trifonas (ed.), International handbook of semiotics, 981–1002. Berlin: Springer.10.1007/978-94-017-9404-6_44Search in Google Scholar
Turney, P. D. & P. Pantel. 2010. From frequency to meaning: Vector space models of semantics. Journal of Artificial Intelligence Research 37(1). 141–188.10.1613/jair.2934Search in Google Scholar
Van Rijsbergen, Cornelis Joost. 2004. The geometry of information retrieval. Cambridge: Cambridge University Press.10.1017/CBO9780511543333Search in Google Scholar
Widdows, Dominic. 2003. Orthogonal negation in vector spaces for modelling word-meanings and document retrieval. Proceedings of the 41st Annual Meeting on Association for Computational Linguistics, vol. 1, 136–143. Morristown, NJ: Association for Computational Linguistics.10.3115/1075096.1075114Search in Google Scholar
Widdows, Dominic. 2004. Geometry and meaning. Stanford, CA: CSLI.Search in Google Scholar
Widdows, Dominic. 2008. Semantic vector products: Some initial investigations. https://ai.google/research/pubs/pub33477 (accessed 17 June 2019).Search in Google Scholar
Widdows, Dominic & Trevor Cohen. 2014. Reasoning with vectors: A continuous model for fast robust inference. Logic Journal of IGPL 23(2). 141–173.10.1093/jigpal/jzu028Search in Google Scholar
Zhang, Dengsheng, Md Monirul Islam & Lu Guojun. 2012. A review on automatic image annotation techniques. Pattern Recognition 45(1). 346–362.10.1016/j.patcog.2011.05.013Search in Google Scholar
Zujovic, Jana, Lisa Gandy, Scott Friedman, Bryan Pardo & Thrasyvoulos N. Pappas. 2009. Classifying paintings by artistic genre: An analysis of features & classifiers. Multimedia signal processing, 2009, 1–5. IEEE.10.1109/MMSP.2009.5293271Search in Google Scholar
© 2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Introduction to Meaningful data/Données signifiantes
- A data-driven computational semiotics: The semantic vector space of Magritte’s artworks
- New approaches to plastic language: Prolegomena to a computer-aided approach to pictorial semiotics
- Mesures et savoirs : Quelles méthodes pour l’histoire culturelle à l’heure du big data ?
- Visual semiotics and automatic analysis of images from the Cultural Analytics Lab: How can quantitative and qualitative analysis be combined?
- Uncertain infographics: Expressing doubt in data visualization
- Quelques expériences pour développer l’expression de sens en cartographie thématique
- Raw data or hypersymbols? Meaning-making with digital data, between discursive processes and machinic procedures
- Differential heterogenesis and the emergence of semiotic function
- Regular Articles
- Semiotic alignment: Towards a dialogical model of interspecific communication
- Modal functioning of rhetorical resources in selected multimodal cartoons
- The mission of the Chinese puzzle: From a quest for order to seeking entertainment
- Memes, genes, and signs: Semiotics in the conceptual interface of evolutionary biology and memetics
- Formalisation sémiotique de la traduction : Le modèle transformationnel d’Alexandre Ljudskanov
- Glossopoesis in Thomas More’s Utopia: Beyond a representation of foreignness
- Playing peripatos: Creativity and abductive inference in religion, art and war
- Borders and translation: Revisiting Juri Lotman’s semiosphere
- Peirce’s philosophy of communication and language communication
- Mythic symbolic type, utopia, and body without organs
- The contribution of narrative semiotics of experiential imaginary to the ideation of new digital customer experiences
- Transference of brand personality in brand name translation: A case study on the Chinese-English translation of men’s clothing brands
- Intertextuality as a strategy of glocalization: A comparative study of Nike’s and Adidas’s 2008 advertising campaigns in China
- The semiotic web of the research proposal
- Sic vita est: Visual representation in painting of the conceptual metaphor LIFE IS A JOURNEY
Articles in the same Issue
- Frontmatter
- Introduction to Meaningful data/Données signifiantes
- A data-driven computational semiotics: The semantic vector space of Magritte’s artworks
- New approaches to plastic language: Prolegomena to a computer-aided approach to pictorial semiotics
- Mesures et savoirs : Quelles méthodes pour l’histoire culturelle à l’heure du big data ?
- Visual semiotics and automatic analysis of images from the Cultural Analytics Lab: How can quantitative and qualitative analysis be combined?
- Uncertain infographics: Expressing doubt in data visualization
- Quelques expériences pour développer l’expression de sens en cartographie thématique
- Raw data or hypersymbols? Meaning-making with digital data, between discursive processes and machinic procedures
- Differential heterogenesis and the emergence of semiotic function
- Regular Articles
- Semiotic alignment: Towards a dialogical model of interspecific communication
- Modal functioning of rhetorical resources in selected multimodal cartoons
- The mission of the Chinese puzzle: From a quest for order to seeking entertainment
- Memes, genes, and signs: Semiotics in the conceptual interface of evolutionary biology and memetics
- Formalisation sémiotique de la traduction : Le modèle transformationnel d’Alexandre Ljudskanov
- Glossopoesis in Thomas More’s Utopia: Beyond a representation of foreignness
- Playing peripatos: Creativity and abductive inference in religion, art and war
- Borders and translation: Revisiting Juri Lotman’s semiosphere
- Peirce’s philosophy of communication and language communication
- Mythic symbolic type, utopia, and body without organs
- The contribution of narrative semiotics of experiential imaginary to the ideation of new digital customer experiences
- Transference of brand personality in brand name translation: A case study on the Chinese-English translation of men’s clothing brands
- Intertextuality as a strategy of glocalization: A comparative study of Nike’s and Adidas’s 2008 advertising campaigns in China
- The semiotic web of the research proposal
- Sic vita est: Visual representation in painting of the conceptual metaphor LIFE IS A JOURNEY