Abstract
Traumatic brain injury (TBI) is a major cause of injury-related mortality and morbidity in the USA and around the world. The survivors may suffer from cognitive and memory deficits, vision and hearing loss, movement disorders, and different psychological problems. The primary insult causes neuronal damage and activates astrocytes and microglia which evokes immune responses causing further damage to the brain. Clinical trials of drugs to recover the neuronal loss are not very successful. Regenerative approaches for TBI using mesenchymal stem cells (MSCs) seem promising. Results of preclinical research have shown that transplantation of MSCs reduced secondary neurodegeneration and neuroinflammation, promoted neurogenesis and angiogenesis, and improved functional outcome in the experimental animals. The functional improvement is not necessarily related to cell engraftment; rather, immunomodulation by molecular factors secreted by MSCs is responsible for the beneficial effects of this therapy. However, MSC therapy has a few drawbacks including tumor formation, which can be avoided by the use of MSC-derived exosomes. This review has focused on the research works published in the field of regenerative therapy using MSCs after TBI and its future direction.
Funding source: Veterans Affairs Merit Review
Award Identifier / Grant number: BX002668
Funding source: Dr. Subhra Mohapatra
Award Identifier / Grant number: IK6BX004212
Funding source: Dr. Shyam Mohapatra
Award Identifier / Grant number: IK6 BX003778
Funding statement: This work is supported by Veterans Affairs Merit Review grant (BX002668, Funder Id: http://dx.doi.org/10.13039/100006364) to Subhra Mohapatra, and Research Career Scientist Awards to Dr. Subhra Mohapatra (IK6BX004212) and Dr. Shyam Mohapatra (IK6 BX003778). Though this report is based upon work supported in part by the Department of Veterans Affairs, Veterans Health Administration, Office of Research and Development, the contents of this report do not represent the views of the Department of Veterans Affairs or the United States Government.
Conflict of interest statement: The authors of this article have no competing interest to declare.
References
Abbott, N.J. and Romero, I.A. (1996). Transporting therapeutics across the blood-brain barrier. Mol. Med. Today 2, 106–113.10.1016/1357-4310(96)88720-XSuche in Google Scholar PubMed
Aggarwal, S. and Pittenger, M.F. (2005). Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105, 1815–1822.10.1182/blood-2004-04-1559Suche in Google Scholar PubMed
Alexanian, A.R., Fehlings, M.G., Zhang, Z., and Maiman, D.J. (2011). Transplanted neurally modified bone marrow-derived mesenchymal stem cells promote tissue protection and locomotor recovery in spinal cord injured rats. Neurorehabil. Neural. Repair 25, 873–880.10.1177/1545968311416823Suche in Google Scholar PubMed
Aloisi, F. (2001). Immune function of microglia. Glia 36, 165–179.10.1002/glia.1106Suche in Google Scholar PubMed
Alves, H., Munoz-Najar, U., De Wit, J., Renard, A.J., Hoeijmakers, J.H., Sedivy, J.M., Van Blitterswijk, C., and De Boer, J. (2010). A link between the accumulation of DNA damage and loss of multi-potency of human mesenchymal stromal cells. J. Cell Mol. Med. 14, 2729–2738.10.1111/j.1582-4934.2009.00931.xSuche in Google Scholar PubMed PubMed Central
Atashi, F., Modarressi, A., and Pepper, M.S. (2015). The role of reactive oxygen species in mesenchymal stem cell adipogenic and osteogenic differentiation: a review. Stem Cells Dev. 24, 1150–1163.10.1089/scd.2014.0484Suche in Google Scholar PubMed PubMed Central
Baddoo, M., Hill, K., Wilkinson, R., Gaupp, D., Hughes, C., Kopen, G.C., and Phinney, D.G. (2003). Characterization of mesenchymal stem cells isolated from murine bone marrow by negative selection. J. Cell Biochem. 89, 1235–1249.10.1002/jcb.10594Suche in Google Scholar PubMed
Badiavas, E.V. and Falanga, V. (2003). Treatment of chronic wounds with bone marrow-derived cells. Arch. Dermatol. 139, 510–516.10.1001/archderm.139.4.510Suche in Google Scholar PubMed
Baustian, C., Hanley, S., and Ceredig, R. (2015). Isolation, selection and culture methods to enhance clonogenicity of mouse bone marrow derived mesenchymal stromal cell precursors. Stem Cell Res. Ther. 6, 151.10.1186/s13287-015-0139-5Suche in Google Scholar PubMed PubMed Central
Belema-Bedada, F., Uchida, S., Martire, A., Kostin, S., and Braun, T. (2008). Efficient homing of multipotent adult mesenchymal stem cells depends on FROUNT-mediated clustering of CCR2. Cell Stem Cell 2, 566–575.10.1016/j.stem.2008.03.003Suche in Google Scholar PubMed
Belting, M. and Christianson, H.C. (2015). Role of exosomes and microvesicles in hypoxia-associated tumour development and cardiovascular disease. J. Intern. Med. 278, 251–263.10.1111/joim.12393Suche in Google Scholar
Blennow, K., Brody, D.L., Kochanek, P.M., Levin, H., McKee, A., Ribbers, G.M., Yaffe, K., and Zetterberg, H. (2016). Traumatic brain injuries. Nat. Rev. Dis. Primers 2, 16084.10.1038/nrdp.2016.84Suche in Google Scholar PubMed
Boltze, J., Lukomska, B., Jolkkonen, J., and for the MEMS–IRBI Consortium. (2014). Mesenchymal stromal cells in stroke: improvement of motor recovery or functional compensation? J. Cereb. Blood Flow Metab. 34, 1420–1421.10.1038/jcbfm.2014.94Suche in Google Scholar PubMed
Boltze, J., Arnold, A., Walczak, P., Jolkkonen, J., Cui, L., and Wagner, D.C. (2015). The dark side of the force – constraints and complications of cell therapies for stroke. Front. Neurol. 6, 155.10.3389/fneur.2015.00155Suche in Google Scholar PubMed
Brait, V.H., Arumugam, T.V., Drummond, G.R., and Sobey, C.G. (2012). Importance of T lymphocytes in brain injury, immunodeficiency, and recovery after cerebral ischemia. J. Cereb. Blood Flow Metab. 32, 598–611.10.1038/jcbfm.2012.6Suche in Google Scholar PubMed
Caplan, A.I. and Dennis, J.E. (2006). Mesenchymal stem cells as trophic mediators. J. Cell Biochem. 98, 1076–1084.10.1002/jcb.20886Suche in Google Scholar PubMed
Carbonara, M., Fossi, F., Zoerle, T., Ortolano, F., Moro, F., Pischiutta, F., Zanier, E.R., and Stocchetti, N. (2018). Neuroprotection in traumatic brain injury: mesenchymal stromal cells can potentially overcome some limitations of previous clinical trials. Front. Neurol. 9, 885.10.3389/fneur.2018.00885Suche in Google Scholar PubMed
Cernak, I. and Noble-Haeusslein, L.J. (2010). Traumatic brain injury: an overview of pathobiology with emphasis on military populations. J. Cereb. Blood Flow Metab. 30, 255–266.10.1038/jcbfm.2009.203Suche in Google Scholar PubMed
Chalela, J.A., Kidwell, C.S., Nentwich, L.M., Luby, M., Butman, J.A., Demchuk, A.M., Hill, M.D., Patronas, N., Latour, L., and Warach, S. (2007). Magnetic resonance imaging and computed tomography in emergency assessment of patients with suspected acute stroke: a prospective comparison. Lancet 369, 293–298.10.1016/S0140-6736(07)60151-2Suche in Google Scholar PubMed
Chamberlain, G., Fox, J., Ashton, B., and Middleton, J. (2007). Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25, 2739–2749.10.1634/stemcells.2007-0197Suche in Google Scholar PubMed
Chamberlain, G., Smith, H., Rainger, G.E., and Middleton, J. (2011). Mesenchymal stem cells exhibit firm adhesion, crawling, spreading and transmigration across aortic endothelial cells: effects of chemokines and shear. PLoS One 6, e25663.10.1371/journal.pone.0025663Suche in Google Scholar PubMed PubMed Central
Chau, M.J., Deveau, T.C., Song, M., Gu, X., Chen, D., and Wei, L. (2014). iPSC Transplantation increases regeneration and functional recovery after ischemic stroke in neonatal rats. Stem Cells 32, 3075–3087.10.1002/stem.1802Suche in Google Scholar PubMed
Chen, J., Li, Y., Wang, L., Zhang, Z., Lu, D., Lu, M., and Chopp, M. (2001). Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke 32, 1005–1011.10.1161/01.STR.32.4.1005Suche in Google Scholar PubMed
Chen, X., Katakowski, M., Li, Y., Lu, D., Wang, L., Zhang, L., Chen, J., Xu, Y., Gautam, S., Mahmood, A., et al. (2002). Human bone marrow stromal cell cultures conditioned by traumatic brain tissue extracts: growth factor production. J. Neurosci. Res. 69, 687–691.10.1002/jnr.10334Suche in Google Scholar PubMed
Chen, J., Zhang, Z.G., Li, Y., Wang, L., Xu, Y.X., Gautam, S.C., Lu, M., Zhu, Z., and Chopp, M. (2003). Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ. Res. 92, 692–699.10.1161/01.RES.0000063425.51108.8DSuche in Google Scholar PubMed
Chen, Q., Long, Y., Yuan, X., Zou, L., Sun, J., Chen, S., Perez-Polo, J.R., and Yang, K. (2005). Protective effects of bone marrow stromal cell transplantation in injured rodent brain: synthesis of neurotrophic factors. J. Neurosci. Res. 80, 611–619.10.1002/jnr.20494Suche in Google Scholar PubMed
Cho, K.J., Trzaska, K.A., Greco, S.J., McArdle, J., Wang, F.S., Ye, J.H., and Rameshwar, P. (2005). Neurons derived from human mesenchymal stem cells show synaptic transmission and can be induced to produce the neurotransmitter substance P by interleukin-1 alpha. Stem Cells 23, 383–391.10.1634/stemcells.2004-0251Suche in Google Scholar PubMed
Choo, K.B., Tai, L., Hymavathee, K.S., Wong, C.Y., Nguyen, P.N., Huang, C.J., Cheong, S.K., and Kamarul, T. (2014). Oxidative stress-induced premature senescence in Wharton’s jelly-derived mesenchymal stem cells. Int. J. Med. Sci. 11, 1201–1207.10.7150/ijms.8356Suche in Google Scholar PubMed PubMed Central
Cui, L.L., Nitzsche, F., Pryazhnikov, E., Tibeykina, M., Tolppanen, L., Rytkonen, J., Huhtala, T., Mu, J.W., Khiroug, L., Boltze, J., et al. (2017). Integrin alpha4 overexpression on rat mesenchymal stem cells enhances transmigration and reduces cerebral embolism after intracarotid injection. Stroke 48, 2895–2900.10.1161/STROKEAHA.117.017809Suche in Google Scholar PubMed
da Silva Meirelles, L., Chagastelles, P.C., and Nardi, N.B. (2006). Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J. Cell Sci. 119, 2204–2213.10.1242/jcs.02932Suche in Google Scholar PubMed
da Silva Meirelles, L., Caplan, A.I., and Nardi, N.B. (2008). In search of the in vivo identity of mesenchymal stem cells. Stem Cells 26, 2287–2299.10.1634/stemcells.2007-1122Suche in Google Scholar PubMed
da Silva Meirelles, L., Sand, T.T., Harman, R.J., Lennon, D.P., and Caplan, A.I. (2009). MSC frequency correlates with blood vessel density in equine adipose tissue. Tissue Eng. Part A 15, 221–229.10.1089/ten.tea.2008.0103Suche in Google Scholar PubMed PubMed Central
da Silva Meirelles, L., Bellagamba, B.C., Camassola, M., and Nardi, N.B. (2016). Mesenchymal stem cells and their relationship to pericytes. Front. Biosci. (Landmark Ed.) 21, 130–156.10.2741/4380Suche in Google Scholar PubMed
Danielyan, L., Schafer, R., von Ameln-Mayerhofer, A., Buadze, M., Geisler, J., Klopfer, T., Burkhardt, U., Proksch, B., Verleysdonk, S., Ayturan, M., et al. (2009). Intranasal delivery of cells to the brain. Eur. J. Cell Biol. 88, 315–324.10.1016/j.ejcb.2009.02.001Suche in Google Scholar PubMed
Dasari, V.R., Spomar, D.G., Cady, C., Gujrati, M., Rao, J.S., and Dinh, D.H. (2007). Mesenchymal stem cells from rat bone marrow downregulate caspase-3-mediated apoptotic pathway after spinal cord injury in rats. Neurochem. Res. 32, 2080–2093.10.1007/s11064-007-9368-zSuche in Google Scholar PubMed PubMed Central
Denu, R.A. and Hematti, P. (2016). Effects of oxidative stress on mesenchymal stem cell biology. Oxid. Med. Cell Longev. 2016, 2989076.10.1155/2016/2989076Suche in Google Scholar PubMed PubMed Central
Di Ianni, M., Del Papa, B., De Ioanni, M., Moretti, L., Bonifacio, E., Cecchini, D., Sportoletti, P., Falzetti, F., and Tabilio, A. (2008). Mesenchymal cells recruit and regulate T regulatory cells. Exp. Hematol. 36, 309–318.10.1016/j.exphem.2007.11.007Suche in Google Scholar PubMed
Di Nicola, M., Carlo-Stella, C., Magni, M., Milanesi, M., Longoni, P.D., Matteucci, P., Grisanti, S., and Gianni, A.M. (2002). Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99, 3838–3843.10.1182/blood.V99.10.3838Suche in Google Scholar PubMed
Djouad, F., Plence, P., Bony, C., Tropel, P., Apparailly, F., Sany, J., Noel, D., and Jorgensen, C. (2003). Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 102, 3837–3844.10.1182/blood-2003-04-1193Suche in Google Scholar PubMed
Doeppner, T.R., Herz, J., Gorgens, A., Schlechter, J., Ludwig, A.K., Radtke, S., de Miroschedji, K., Horn, P.A., Giebel, B., and Hermann, D.M. (2015). Extracellular vesicles improve post-stroke neuroregeneration and prevent postischemic immunosuppression. Stem Cells Transl. Med. 4, 1131–1143.10.5966/sctm.2015-0078Suche in Google Scholar PubMed PubMed Central
Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D., and Horwitz, E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8, 315–317.10.1080/14653240600855905Suche in Google Scholar PubMed
Donega, V. and Raineteau, O. (2017). Postnatal neural stem cells: probing their competence for cortical repair. Neuroscientist 23, 605–615.10.1177/1073858417697036Suche in Google Scholar PubMed
El Bassit, G., Patel, R.S., Carter, G., Shibu, V., Patel, A.A., Song, S., Murr, M., Cooper, D.R., Bickford, P.C., and Patel, N.A. (2017). M ALAT1 inhuman adipose stem cells modulates survival and alternative splicing of PKCdeltaII in HT22 Cells. Endocrinology 158, 183–195.10.1210/en.2016-1819Suche in Google Scholar
Engela, A.U., Baan, C.C., Peeters, A.M., Weimar, W., and Hoogduijn, M.J. (2013). Interaction between adipose tissue-derived mesenchymal stem cells and regulatory T-cells. Cell Transplant 22, 41–54.10.3727/096368912X636984Suche in Google Scholar PubMed
Eslaminejad, M.B. and Nadri, S. (2009). Murine mesenchymal stem cell isolated and expanded in low and high density culture system: surface antigen expression and osteogenic culture mineralization. In Vitro Cell Dev. Biol. Anim. 45, 451–459.10.1007/s11626-009-9198-1Suche in Google Scholar PubMed
Eslaminejad, M.B., Nikmahzar, A., Taghiyar, L., Nadri, S., and Massumi, M. (2006). Murine mesenchymal stem cells isolated by low density primary culture system. Dev. Growth Differ. 48, 361–370.10.1111/j.1440-169X.2006.00874.xSuche in Google Scholar PubMed
Feng, Y., Ju, Y., Cui, J., and Wang, L. (2017). Bone marrow stromal cells promote neuromotor functional recovery, via upregulation of neurotrophic factors and synapse proteins following traumatic brain injury in rats. Mol. Med. Rep. 16, 654–660.10.3892/mmr.2017.6619Suche in Google Scholar PubMed PubMed Central
Gaillard, P., Visser, C.C., Appeldoorn, C.M., and Rip, J. (2012). Enhanced brain drug delivery: safely crossing the blood-brain barrier. Drug Discov. Today Technol. 9, e71–e174.10.1016/j.ddtec.2011.12.002Suche in Google Scholar PubMed
Galeano, C., Qiu, Z., Mishra, A., Farnsworth, S.L., Hemmi, J.J., Moreira, A., Edenhoffer, P., and Hornsby, P.J. (2018). The route by which intranasally delivered stem cells enter the central nervous system. Cell Transplant. 27, 501–514.10.1177/0963689718754561Suche in Google Scholar PubMed PubMed Central
Galindo, L.T., Filippo, T.R., Semedo, P., Ariza, C.B., Moreira, C.M., Camara, N.O., and Porcionatto, M.A. (2011). Mesenchymal stem cell therapy modulates the inflammatory response in experimental traumatic brain injury. Neurol. Res. Int. 2011, 564089.10.1155/2011/564089Suche in Google Scholar PubMed PubMed Central
Garcia-Olmo, D., Garcia-Arranz, M., Herreros, D., Pascual, I., Peiro, C., and Rodriguez-Montes, J.A. (2005). A phase I clinical trial of the treatment of Crohn’s fistula by adipose mesenchymal stem cell transplantation. Dis. Colon Rectum 48, 1416–1423.10.1007/s10350-005-0052-6Suche in Google Scholar PubMed
Geesala, R., Dhoke, N.R., and Das, A. (2017). Cox-2 inhibition potentiates mouse bone marrow stem cell engraftment and differentiation-mediated wound repair. Cytotherapy 19, 756–770.10.1016/j.jcyt.2017.03.072Suche in Google Scholar PubMed
Giordano, A., Galderisi, U., and Marino, I.R. (2007). From the laboratory bench to the patient’s bedside: an update on clinical trials with mesenchymal stem cells. J. Cell Physiol. 211, 27–35.10.1002/jcp.20959Suche in Google Scholar
Greco, S.J., Zhou, C., Ye, J.H., and Rameshwar, P. (2007). An interdisciplinary approach and characterization of neuronal cells transdifferentiated from human mesenchymal stem cells. Stem Cells Dev. 16, 811–826.10.1089/scd.2007.0011Suche in Google Scholar PubMed
Han, E.Y., Chun, M.H., Kim, S.T., and Lim, D.P. (2013). Injection time-dependent effect of adult human bone marrow stromal cell transplantation in a rat model of severe traumatic brain injury. Curr. Stem Cell Res. Ther. 8, 172–181.10.2174/1574888X11308020008Suche in Google Scholar
Harmon, K.G., Drezner, J.A., Gammons, M., Guskiewicz, K.M., Halstead, M., Herring, S.A., Kutcher, J.S., Pana, A., Putukian, M., and Roberts, W.O. (2013). American Medical Society for Sports Medicine position statement: concussion in sport. Br. J. Sports Med. 47, 15–26.10.1136/bjsports-2012-091941Suche in Google Scholar PubMed
Hasan, A., Deeb, G., Rahal, R., Atwi, K., Mondello, S., Marei, H.E., Gali, A., and Sleiman, E. (2017). Mesenchymal stem cells in the treatment of traumatic brain injury. Front. Neurol. 8, 28.10.3389/fneur.2017.00028Suche in Google Scholar PubMed
Haynesworth, S.E., Baber, M.A., and Caplan, A.I. (1996). Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro: effects of dexamethasone and IL-1α. J. Cell Physiol. 166, 585–592.10.1002/(SICI)1097-4652(199603)166:3<585::AID-JCP13>3.0.CO;2-6Suche in Google Scholar
Herberts, C.A., Kwa, M.S., and Hermsen, H.P. (2011). Risk factors in the development of stem cell therapy. J. Transl. Med. 9, 29.10.1186/1479-5876-9-29Suche in Google Scholar PubMed
Hofstetter, C.P., Schwarz, E.J., Hess, D., Widenfalk, J., El Manira, A., Prockop, D.J., and Olson, L. (2002). Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc. Natl. Acad. Sci. U.S.A. 99, 2199–2204.10.1073/pnas.042678299Suche in Google Scholar PubMed
Horwitz, E.M., Le Blanc, K., Dominici, M., Mueller, I., Slaper-Cortenbach, I., Marini, F.C., Deans, R.J., Krause, D.S., Keating, A., and International Society for Cellular Therapy. (2005). Clarification of the nomenclature for MSC: the International Society for Cellular Therapy position statement. Cytotherapy 7, 393–395.10.1080/14653240500319234Suche in Google Scholar PubMed
Houlihan, D.D., Mabuchi, Y., Morikawa, S., Niibe, K., Araki, D., Suzuki, S., Okano, H., and Matsuzaki, Y. (2012). Isolation of mouse mesenchymal stem cells on the basis of expression of Sca-1 and PDGFRα. Nat. Protoc. 7, 2103–2111.10.1038/nprot.2012.125Suche in Google Scholar PubMed
Huat, T.J., Khan, A.A., Pati, S., Mustafa, Z., Abdullah, J.M., and Jaafar, H. (2014). IGF-1 enhances cell proliferation and survival during early differentiation of mesenchymal stem cells to neural progenitor-like cells. BMC Neurosci. 15, 91.10.1186/1471-2202-15-91Suche in Google Scholar PubMed PubMed Central
Hung, S.C., Pochampally, R.R., Chen, S.C., Hsu, S.C., and Prockop, D.J. (2007). Angiogenic effects of human multipotent stromal cell conditioned medium activate the PI3K-Akt pathway in hypoxic endothelial cells to inhibit apoptosis, increase survival, and stimulate angiogenesis. Stem Cells 25, 2363–2370.10.1634/stemcells.2006-0686Suche in Google Scholar PubMed
Itoh, K., Tezuka, H., Sakoda, H., Konno, M., Nagata, K., Uchiyama, T., Uchino, H., and Mori, K.J. (1989). Reproducible establishment of hemopoietic supportive stromal cell lines from murine bone marrow. Exp. Hematol, 17, 145–153.Suche in Google Scholar PubMed
Jang, S.H. and Seo, J.P. (2015). Damage to the optic radiation in patients with mild traumatic brain injury. J. Neuroophthalmol. 35, 270–273.10.1097/WNO.0000000000000249Suche in Google Scholar PubMed
Jones, N.C., Cardamone, L., Williams, J.P., Salzberg, M.R., Myers, D., and O’Brien, T.J. (2008). Experimental traumatic brain injury induces a pervasive hyperanxious phenotype in rats. J. Neurotrauma 25, 1367–1374.10.1089/neu.2008.0641Suche in Google Scholar PubMed
Kainer, M.A., Linden, J.V., Whaley, D.N., Holmes, H.T., Jarvis, W.R., Jernigan, D.B., and Archibald, L.K. (2004). Clostridium infections associated with musculoskeletal-tissue allografts. N. Engl. J Med. 350, 2564–2571.10.1056/NEJMoa023222Suche in Google Scholar PubMed
Karp, J.M. and Leng Teo, G.S. (2009). Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell 4, 206–216.10.1016/j.stem.2009.02.001Suche in Google Scholar PubMed
Kim, D.K., Nishida, H., An, S.Y., Shetty, A.K., Bartosh, T.J., and Prockop, D.J. (2016). Chromatographically isolated CD63+CD81+ extracellular vesicles from mesenchymal stromal cells rescue cognitive impairments after TBI. Proc. Natl. Acad. Sci. U.S.A. 113, 170–175.10.1073/pnas.1522297113Suche in Google Scholar PubMed PubMed Central
King, A., Balaji, S., Keswani, S.G., and Crombleholme, T.M. (2014). The role of stem cells in wound angiogenesis. Adv. Wound Care 3, 614–625.10.1089/wound.2013.0497Suche in Google Scholar PubMed PubMed Central
Kinnaird, T., Stabile, E., Burnett, M.S., Shou, M., Lee, C.W., Barr, S., Fuchs, S., and Epstein, S.E. (2004). Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 109, 1543–1549.10.1161/01.CIR.0000124062.31102.57Suche in Google Scholar PubMed
Kizilay Mancini, O., Shum-Tim, D., Stochaj, U., Correa, J.A., and Colmegna, I. (2015). Age, atherosclerosis and type 2 diabetes reduce human mesenchymal stromal cell-mediated T-cell suppression. Stem Cell Res. Ther. 6, 140.10.1186/s13287-015-0127-9Suche in Google Scholar PubMed PubMed Central
Knoepfler, P.S. (2009). Deconstructing stem cell tumorigenicity: a roadmap to safe regenerative medicine. Stem Cells 27, 1050–1056.10.1002/stem.37Suche in Google Scholar PubMed PubMed Central
Ko, E., Lee, K.Y., and Hwang, D.S. (2012). Human umbilical cord blood-derived mesenchymal stem cells undergo cellular senescence in response to oxidative stress. Stem Cells Dev. 21, 1877–1886.10.1089/scd.2011.0284Suche in Google Scholar PubMed PubMed Central
Kobayashi, C.I. and Suda, T. (2012). Regulation of reactive oxygen species in stem cells and cancer stem cells. J. Cell. Physiol. 227, 421–430.10.1002/jcp.22764Suche in Google Scholar PubMed
Kopen, G.C., Prockop, D.J., and Phinney, D.G. (1999). Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc. Natl. Acad. Sci. U.S.A. 96, 10711–10716.10.1073/pnas.96.19.10711Suche in Google Scholar PubMed PubMed Central
Kota, D.J., Prabhakara, K.S., van Brummen, A.J., Bedi, S., Xue, H., DiCarlo, B., Cox, C.S., Jr., and Olson, S.D. (2016). Propranolol and mesenchymal stromal cells combine to treat traumatic brain injury. Stem Cells Transl. Med. 5, 33–44.10.5966/sctm.2015-0065Suche in Google Scholar PubMed PubMed Central
Kota, D.J., Prabhakara, K.S., Toledano-Furman, N., Bhattarai, D., Chen, Q., DiCarlo, B., Smith, P., Triolo, F., Wenzel, P.L., Cox, C.S., Jr., et al. (2017). Prostaglandin E2 indicates therapeutic efficacy of mesenchymal stem cells in experimental traumatic brain injury. Stem Cells 35, 1416–1430.10.1002/stem.2603Suche in Google Scholar PubMed
Kwon, H.M., Hur, S.M., Park, K.Y., Kim, C.K., Kim, Y.M., Kim, H.S., Shin, H.C., Won, M.H., Ha, K.S., Kwon, Y.G., et al. (2014). Multiple paracrine factors secreted by mesenchymal stem cells contribute to angiogenesis. Vascul. Pharmacol. 63, 19–28.10.1016/j.vph.2014.06.004Suche in Google Scholar PubMed
Lai, R.C., Arslan, F., Lee, M.M., Sze, N.S., Choo, A., Chen, T.S., Salto-Tellez, M., Timmers, L., Lee, C.N., El Oakley, R.M., et al. (2010). Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res. 4, 214–222.10.1016/j.scr.2009.12.003Suche in Google Scholar PubMed
Lai, R.C., Chen, T.S., and Lim, S.K. (2011). Mesenchymal stem cell exosome: a novel stem cell-based therapy for cardiovascular disease. Regen. Med. 6, 481–492.10.2217/rme.11.35Suche in Google Scholar PubMed
Landgraf, K., Brunauer, R., Lepperdinger, G., and Grubeck-Loebenstein, B. (2011). The suppressive effect of mesenchymal stromal cells on T cell proliferation is conserved in old age. Transpl. Immunol. 25, 167–172.10.1016/j.trim.2011.06.007Suche in Google Scholar PubMed
Lee, B. and Newberg, A. (2005). Neuroimaging in traumatic brain imaging. NeuroRx 2, 372–383.10.1602/neurorx.2.2.372Suche in Google Scholar PubMed PubMed Central
Lee, J.K., Jin, H.K., Endo, S., Schuchman, E.H., Carter, J.E., and Bae, J.S. (2010). Intracerebral transplantation of bone marrow-derived mesenchymal stem cells reduces amyloid-beta deposition and rescues memory deficits in Alzheimer’s disease mice by modulation of immune responses. Stem Cells 28, 329–343.10.1002/stem.277Suche in Google Scholar PubMed
Li, G., Bonamici, N., Dey, M., Lesniak, M.S., and Balyasnikova, I.V. (2018). Intranasal delivery of stem cell-based therapies for the treatment of brain malignancies. Expert Opin. Drug Deliv. 15, 163–172.10.1080/17425247.2018.1378642Suche in Google Scholar PubMed PubMed Central
Lin, W.P., Chen, X.W., Zhang, L.Q., Wu, C.Y., Huang, Z.D., and Lin, J.H. (2013). Effect of neuroglobin genetically modified bone marrow mesenchymal stem cells transplantation on spinal cord injury in rabbits. PLoS One 8, e63444.10.1371/journal.pone.0063444Suche in Google Scholar PubMed PubMed Central
Lin, C.H., Lin, W., Su, Y.C., Cheng-Yo Hsuan, Y., Chen, Y.C., Chang, C.P., Chou, W., and Lin, K.C. (2019). Modulation of parietal cytokine and chemokine gene profiles by mesenchymal stem cell as a basis for neurotrauma recovery. J. Formos. Med. Assoc. https://doi.org/10.1016/j.jfma.2019.01.008.10.1016/j.jfma.2019.01.008Suche in Google Scholar PubMed
Lipton, M.L., Kim, N., Park, Y.K., Hulkower, M.B., Gardin, T.M., Shifteh, K., Kim, M., Zimmerman, M.E., Lipton, R.B., et al. (2012). Robust detection of traumatic axonal injury in individual mild traumatic brain injury patients: intersubject variation, change over time and bidirectional changes in anisotropy. Brain Imaging Behav. 6, 329–342.10.1007/s11682-012-9175-2Suche in Google Scholar PubMed
Maerz, J.K., Roncoroni, L.P., Goldeck, D., Abruzzese, T., Kalbacher, H., Rolauffs, B., DeZwart, P., Nieselt, K., Hart, M.L., Klein, G., et al. (2016). Bone marrow-derived mesenchymal stromal cells differ in their attachment to fibronectin-derived peptides from term placenta-derived mesenchymal stromal cells. Stem Cell Res. Ther. 7, 29.10.1186/s13287-015-0243-6Suche in Google Scholar PubMed PubMed Central
Mahmood, A., Lu, D., Lu, M., and Chopp, M. (2003). Treatment of traumatic brain injury in adult rats with intravenous administration of human bone marrow stromal cells. Neurosurgery 53, 697–702; discussion 702–693.10.1227/01.NEU.0000079333.61863.AASuche in Google Scholar PubMed
Mahmood, A., Lu, D., and Chopp, M. (2004). Intravenous administration of marrow stromal cells (MSCs) increases the expression of growth factors in rat brain after traumatic brain injury. J. Neurotrauma. 21, 33–39.10.1089/089771504772695922Suche in Google Scholar PubMed
Mahmood, A., Lu, D., Qu, C., Goussev, A., and Chopp, M. (2005). Human marrow stromal cell treatment provides long-lasting benefit after traumatic brain injury in rats. Neurosurgery 57, 1026–1031; discussion 1026–1031.10.1227/01.NEU.0000181369.76323.50Suche in Google Scholar PubMed
Mahmood, A., Lu, D., Qu, C., Goussev, A., and Chopp, M. (2006). Long-term recovery after bone marrow stromal cell treatment of traumatic brain injury in rats. J. Neurosurg. 104, 272–277.10.3171/jns.2006.104.2.272Suche in Google Scholar PubMed
Majumdar, M.K., Thiede, M.A., Mosca, J.D., Moorman, M., and Gerson, S.L. (1998). Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. J. Cell Physiol. 176, 57–66.10.1002/(SICI)1097-4652(199807)176:1<57::AID-JCP7>3.0.CO;2-7Suche in Google Scholar PubMed
Management of Concussion/m.TBI Working Group. (2009). VA/DoD clinical practice guideline for management of concussion/mild traumatic brain injury. J. Rehabil. Res. Dev. 46, CP1–68.Suche in Google Scholar PubMed
Maruta, J., Lee, S.W., Jacobs, E.F., and Ghajar, J. (2010). A unified science of concussion. Ann. NY Acad. Sci. 1208, 58–66.10.1111/j.1749-6632.2010.05695.xSuche in Google Scholar
Mastro-Martinez, I., Perez-Suarez, E., Melen, G., Gonzalez-Murillo, A., Casco, F., Lozano-Carbonero, N., Gutierrez-Fernandez, M., Diez-Tejedor, E., Casado-Flores, J., Ramirez-Orellana, M., et al. (2015). Effects of local administration of allogenic adipose tissue-derived mesenchymal stem cells on functional recovery in experimental traumatic brain injury. Brain Inj. 29, 1497–1510.10.3109/02699052.2015.1053525Suche in Google Scholar PubMed
Meirelles Lda, S., Fontes, A.M., Covas, D.T., and Caplan, A.I. (2009). Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev. 20, 419–427.10.1016/j.cytogfr.2009.10.002Suche in Google Scholar PubMed
Meisel, R., Zibert, A., Laryea, M., Gobel, U., Daubener, W., and Dilloo, D. (2004). Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood 103, 4619–4621.10.1182/blood-2003-11-3909Suche in Google Scholar PubMed
Menge, T., Zhao, Y., Zhao, J., Wataha, K., Gerber, M., Zhang, J., Letourneau, P., Redell, J., Shen, L., Wang, J., et al. (2012). Mesenchymal stem cells regulate blood-brain barrier integrity through TIMP3 release after traumatic brain injury. Sci. Transl. Med. 4, 161ra150.10.1126/scitranslmed.3004660Suche in Google Scholar PubMed
Menon, D.K. and Ercole, A. (2017). Critical care management of traumatic brain injury. Handb. Clin. Neurol. 140, 239–274.10.1016/B978-0-444-63600-3.00014-3Suche in Google Scholar PubMed
Menon, D.K., Schwab, K., Wright, D.W., Maas, A.I., and Demographics and Clinical Assessment Working Group of the International and Interagency Initiative toward Common Data Elements for Research onTraumatic Brain Injuryand Psychological Health. (2010). Position statement: definition of traumatic brain injury. Arch. Phys. Med. Rehabil. 91, 1637–1640.10.1016/j.apmr.2010.05.017Suche in Google Scholar PubMed
Mettang, M., Reichel, S.N., Lattke, M., Palmer, A., Abaei, A., Rasche, V., Huber-Lang, M., Baumann, B., and Wirth, T. (2018). IKK2/NF-κB signaling protects neurons after traumatic brain injury. FASEB J. 34, 1916–1932.10.1096/fj.201700826RSuche in Google Scholar PubMed PubMed Central
Minnich, J.E., Mann, S.L., Stock, M., Stolzenbach, K.A., Mortell, B.M., Soderstrom, K.E., Bohn, M.C., and Kozlowski, D.A. (2010). Glial cell line-derived neurotrophic factor (GDNF) gene delivery protects cortical neurons from dying following a traumatic brain injury. Restor. Neurol. Neurosci. 28, 293–309.10.3233/RNN-2010-0528Suche in Google Scholar PubMed
Molcanyi, M., Riess, P., Bentz, K., Maegele, M., Hescheler, J., Schafke, B., Trapp, T., Neugebauer, E., Klug, N., and Schafer, U. (2007). Trauma-associated inflammatory response impairs embryonic stem cell survival and integration after implantation into injured rat brain. J. Neurotrauma 24, 625–637.10.1089/neu.2006.0180Suche in Google Scholar PubMed
Moreau, F., Asdaghi, N., Modi, J., Goyal, M., and Coutts, S.B. (2013). Magnetic resonance imaging versus computed tomography in transient ischemic attack and minor stroke: the more you see the more you know. Cerebrovasc. Dis. Extra 3, 130–136.10.1159/000355024Suche in Google Scholar PubMed PubMed Central
Narva, E., Autio, R., Rahkonen, N., Kong, L., Harrison, N., Kitsberg, D., Borghese, L., Itskovitz-Eldor, J., Rasool, O., Dvorak, P., et al. (2010). High-resolution DNA analysis of human embryonic stem cell lines reveals culture-induced copy number changes and loss of heterozygosity. Nat. Biotechnol. 28, 371–377.10.1038/nbt.1615Suche in Google Scholar PubMed
Nasef, A., Chapel, A., Mazurier, C., Bouchet, S., Lopez, M., Mathieu, N., Sensebe, L., Zhang, Y., Gorin, N.C., Thierry, D., et al. (2007). Identification of IL-10 and TGF-beta transcripts involved in the inhibition of T-lymphocyte proliferation during cell contact with human mesenchymal stem cells. Gene. Expr. 13, 217–226.10.3727/000000006780666957Suche in Google Scholar PubMed PubMed Central
Nasef, A., Ashammakhi, N., and Fouillard, L. (2008). Immunomodulatory effect of mesenchymal stromal cells: possible mechanisms. Regen. Med. 3, 531–546.10.2217/17460751.3.4.531Suche in Google Scholar PubMed
Navaratna, D., Guo, S., Arai, K., and Lo, E.H. (2009). Mechanisms and targets for angiogenic therapy after stroke. Cell Adh. Migr. 3, 216–223.10.4161/cam.3.2.8396Suche in Google Scholar PubMed PubMed Central
Nemeth, K., Leelahavanichkul, A., Yuen, P.S., Mayer, B., Parmelee, A., Doi, K., Robey, P.G., Leelahavanichkul, K., Koller, B.H., Brown, J.M., et al. (2009). Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat. Med. 15, 42–49.10.1038/nm.1905Suche in Google Scholar PubMed PubMed Central
Ni, H., Yang, S., Siaw-Debrah, F., Hu, J., Wu, K., He, Z., Yang, J., Pan, S., Lin, X., Ye, H., et al. (2019). Exosomes derived from bone mesenchymal stem cells ameliorate early inflammatory responses following traumatic brain injury. Front. Neurosci. 13, 14.10.3389/fnins.2019.00014Suche in Google Scholar PubMed PubMed Central
Nichol, A., French, C., Little, L., Haddad, S., Presneill, J., Arabi, Y., Bailey, M., Cooper, D.J., Duranteau, J., Huet, O., et al. (2015). Erythropoietin in traumatic brain injury (EPO-TBI): a double-blind randomised controlled trial. Lancet 386, 2499–2506.10.1016/S0140-6736(15)00386-4Suche in Google Scholar PubMed
Nichols, J.E., Niles, J.A., DeWitt, D., Prough, D., Parsley, M., Vega, S., Cantu, A., Lee, E., and Cortiella, J. (2013). Neurogenic and neuro-protective potential of a novel subpopulation of peripheral blood-derived CD133+ ABCG2+CXCR4+ mesenchymal stem cells: development of autologous cell-based therapeutics for traumatic brain injury. Stem Cell Res. Ther. 4, 3.10.1186/scrt151Suche in Google Scholar PubMed PubMed Central
Niwa, A., Umeda, K., Chang, H., Saito, M., Okita, K., Takahashi, K., Nakagawa, M., Yamanaka, S., Nakahata, T., and Heike, T. (2009). Orderly hematopoietic development of induced pluripotent stem cells via Flk-1+ hemoangiogenic progenitors. J. Cell Physiol. 221, 367–377.10.1002/jcp.21864Suche in Google Scholar PubMed
Ohab, J.J., Fleming, S., Blesch, A., and Carmichael, S.T. (2006). A neurovascular niche for neurogenesis after stroke. J. Neurosci. 26, 13007–13016.10.1523/JNEUROSCI.4323-06.2006Suche in Google Scholar PubMed PubMed Central
Okouchi, M., Ekshyyan, O., Maracine, M., Aw, T.Y. (2007). Neuronal apoptosis in neurodegeneration. Antioxid. Redox Signal 9, 1059–1096.10.1089/ars.2007.1511Suche in Google Scholar PubMed
Omori, Y., Honmou, O., Harada, K., Suzuki, J., Houkin, K., and Kocsis, J.D. (2008). Optimization of a therapeutic protocol for intravenous injection of human mesenchymal stem cells after cerebral ischemia in adult rats. Brain Res. 1236, 30–38.10.1016/j.brainres.2008.07.116Suche in Google Scholar PubMed PubMed Central
Orciani, M., Gorbi, S., Benedetti, M., Di Benedetto, G., Mattioli-Belmonte, M., Regoli, F., and Di Primio, R. (2010). Oxidative stress defense in human-skin-derived mesenchymal stem cells versus human keratinocytes: different mechanisms of protection and cell selection. Free Radic. Biol. Med. 49, 830–838.10.1016/j.freeradbiomed.2010.06.007Suche in Google Scholar PubMed
Pant, S., Hilton, H., and Burczynski, M.E. (2012). The multifaceted exosome: biogenesis, role in normal and aberrant cellular function, and frontiers for pharmacological and biomarker opportunities. Biochem. Pharmacol. 83, 1484–1494.10.1016/j.bcp.2011.12.037Suche in Google Scholar PubMed PubMed Central
Parr, A.M., Tator, C.H., and Keating, A. (2007). Bone marrow-derived mesenchymal stromal cells for the repair of central nervous system injury. Bone Marrow Transplant 40, 609–619.10.1038/sj.bmt.1705757Suche in Google Scholar PubMed
Patel, N.A., Moss, L.D., Lee, J.Y., Tajiri, N., Acosta, S., Hudson, C., Parag, S., Cooper, D.R., Borlongan, C.V., and Bickford, P.C. (2018). Long noncoding RNA MALAT1 in exosomes drives regenerative function and modulates inflammation-linked networks following traumatic brain injury. J. Neuroinflamm. 15, 204.10.1186/s12974-018-1240-3Suche in Google Scholar PubMed PubMed Central
Pati, S., Muthuraju, S., Hadi, R.A., Huat, T.J., Singh, S., Maletic-Savatic, M., Abdullah, J.M., and Jaafar, H. (2016). Neurogenic plasticity of mesenchymal stem cell, an alluring cellular replacement for traumatic brain injury. Curr. Stem Cell Res. Ther. 11, 149–157.10.2174/1574888X10666151019120050Suche in Google Scholar PubMed
Peister, A., Mellad, J.A., Larson, B.L., Hall, B.M., Gibson, L.F., and Prockop, D.J. (2004). Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood 103, 1662–1668.10.1182/blood-2003-09-3070Suche in Google Scholar PubMed
Peruzzaro, S.T., Andrews, M.M.M., Al-Gharaibeh, A., Pupiec, O., Resk, M., Story, D., Maiti, P., Rossignol, J., and Dunbar, G.L. (2019). Transplantation of mesenchymal stem cells genetically engineered to overexpress interleukin-10 promotes alternative inflammatory response in rat model of traumatic brain injury. J. Neuroinflamm. 16, 2.10.1186/s12974-018-1383-2Suche in Google Scholar
Phinney, D.G., Kopen, G., Isaacson, R.L., and Prockop, D.J. (1999). Plastic adherent stromal cells from the bone marrow of commonly used strains of inbred mice: variations in yield, growth, and differentiation. J. Cell Biochem. 72, 570–585.10.1002/(SICI)1097-4644(19990315)72:4<570::AID-JCB12>3.0.CO;2-WSuche in Google Scholar PubMed
Pischiutta, F., D’Amico, G., Dander, E., Biondi, A., Biagi, E., Citerio, G., De Simoni, M.G., and Zanier, E.R. (2014). Immunosuppression does not affect human bone marrow mesenchymal stromal cell efficacy after transplantation in traumatized mice brain. Neuropharmacology 79, 119–126.10.1016/j.neuropharm.2013.11.001Suche in Google Scholar PubMed
Pischiutta, F., Brunelli, L., Romele, P., Silini, A., Sammali, E., Paracchini, L., Marchini, S., Talamini, L., Bigini, P., Boncoraglio, G.B., et al. (2016). Protection of brain injury by amniotic mesenchymal stromal cell-secreted metabolites. Crit. Care Med. 44, e1118–e1131.10.1097/CCM.0000000000001864Suche in Google Scholar PubMed
Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S., and Marshak, D.R. (1999). Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–147.10.1126/science.284.5411.143Suche in Google Scholar PubMed
Ponte, A.L., Marais, E., Gallay, N., Langonne, A., Delorme, B., Herault, O., Charbord, P., and Domenech, J. (2007). The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities. Stem Cells 25, 1737–1745.10.1634/stemcells.2007-0054Suche in Google Scholar PubMed
Qu, J. and Zhang, H. (2017). Roles of mesenchymal stem cells in spinal cord injury. Stem Cells Int. 2017, 5251313.10.1155/2017/5251313Suche in Google Scholar PubMed
Redondo-Castro, E., Cunningham, C., Miller, J., Martuscelli, L., Aoulad-Ali, S., Rothwell, N.J., Kielty, C.M., Allan, S.M., and Pinteaux, E. (2017). Interleukin-1 primes human mesenchymal stem cells towards an anti-inflammatory and pro-trophic phenotype in vitro. Stem Cell Res. Ther. 8, 79.10.1186/s13287-017-0531-4Suche in Google Scholar PubMed
Rehman, J., Traktuev, D., Li, J., Merfeld-Clauss, S., Temm-Grove, C.J., Bovenkerk, J.E., Pell, C.L., Johnstone, B.H., Considine, R.V., and March, K.L. (2004). Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 109, 1292–1298.10.1161/01.CIR.0000121425.42966.F1Suche in Google Scholar PubMed
Ren, J., Stroncek, D.F., Zhao, Y., Jin, P., Castiello, L., Civini, S., Wang, H., Feng, J., Tran, K., Kuznetsov, S.A., et al. (2013). Intra-subject variability in human bone marrow stromal cell (BMSC) replicative senescence: molecular changes associated with BMSC senescence. Stem Cell Res 11, 1060–1073.10.1016/j.scr.2013.07.005Suche in Google Scholar PubMed PubMed Central
Rizzo, R., Campioni, D., Stignani, M., Melchiorri, L., Bagnara, G.P., Bonsi, L., Alviano, F., Lanzoni, G., Moretti, S., Cuneo, A., et al. (2008). A functional role for soluble HLA-G antigens in immune modulation mediated by mesenchymal stromal cells. Cytotherapy 10, 364–375.10.1080/14653240802105299Suche in Google Scholar PubMed
Robertson, C.S., Hannay, H.J., Yamal, J.M., Gopinath, S., Goodman, J.C., Tilley, B.C., Epo Severe TBI Trial Investigators, Baldwin, A., Rivera Lara, L., Saucedo-Crespo, H., et al. (2014). Effect of erythropoietin and transfusion threshold on neurological recovery after traumatic brain injury: a randomized clinical trial. J. Am. Med. Assoc. 312, 36–47.10.1001/jama.2014.6490Suche in Google Scholar PubMed PubMed Central
Rojewski, M.T., Weber, B.M., and Schrezenmeier, H. (2008). Phenotypic characterization of mesenchymal stem cells from various tissues. Transfus. Med. Hemother. 35, 168–184.10.1159/000129013Suche in Google Scholar PubMed PubMed Central
Ruster, B., Gottig, S., Ludwig, R.J., Bistrian, R., Muller, S., Seifried, E., Gille, J., and Henschler, R. (2006). Mesenchymal stem cells display coordinated rolling and adhesion behavior on endothelial cells. Blood 108, 3938–3944.10.1182/blood-2006-05-025098Suche in Google Scholar PubMed
Sanchez-Ramos, J., Song, S., Cardozo-Pelaez, F., Hazzi, C., Stedeford, T., Willing, A., Freeman, T.B., Saporta, S., Janssen, W., Patel, N., et al. (2000). Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp. Neurol, 164, 247–256.10.1006/exnr.2000.7389Suche in Google Scholar PubMed
Sato, K., Ozaki, K., Oh, I., Meguro, A., Hatanaka, K., Nagai, T., Muroi, K., and Ozawa, K. (2007). Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood 109, 228–234.10.1182/blood-2006-02-002246Suche in Google Scholar PubMed
Schizas, N., Konig, N., Andersson, B., Vasylovska, S., Hoeber, J., Kozlova, E.N., and Hailer, N.P. (2018). Neural crest stem cells protect spinal cord neurons from excitotoxic damage and inhibit glial activation by secretion of brain-derived neurotrophic factor. Cell. Tissue Res. 372, 493–505.10.1007/s00441-018-2808-zSuche in Google Scholar PubMed PubMed Central
Schmidt, A., Ladage, D., Steingen, C., Brixius, K., Schinkothe, T., Klinz, F.J., Schwinger, R.H., Mehlhorn, U., and Bloch, W. (2006). Mesenchymal stem cells transmigrate over the endothelial barrier. Eur. J. Cell Biol. 85, 1179–1188.10.1016/j.ejcb.2006.05.015Suche in Google Scholar PubMed
Scuteri, A., Miloso, M., Foudah, D., Orciani, M., Cavaletti, G., and Tredici, G. (2011). Mesenchymal stem cells neuronal differentiation ability: a real perspective for nervous system repair? Curr. Stem Cell Res. Ther. 6, 82–92.10.2174/157488811795495486Suche in Google Scholar PubMed
Segers, V.F., Van Riet, I., Andries, L.J., Lemmens, K., Demolder, M.J., De Becker, A.J., Kockx, M.M., and De Keulenaer, G.W. (2006). Mesenchymal stem cell adhesion to cardiac microvascular endothelium: activators and mechanisms. Am. J. Physiol. Heart Circ. Physiol. 290, H1370–1377.10.1152/ajpheart.00523.2005Suche in Google Scholar PubMed
Sheikh, A.M., Nagai, A., Wakabayashi, K., Narantuya, D., Kobayashi, S., Yamaguchi, S., and Kim, S.U. (2011). Mesenchymal stem cell transplantation modulates neuroinflammation in focal cerebral ischemia: contribution of fractalkine and IL-5. Neurobiol. Dis. 41, 717–724.10.1016/j.nbd.2010.12.009Suche in Google Scholar PubMed
Shen, Q., Yin, Y., Xia, Q.J., Lin, N., Wang, Y.C., Liu, J., Wang, H.P., Lim, A., and Wang, T.H. (2016). Bone marrow stromal cells promote neuronal restoration in rats with traumatic brain injury: involvement of GDNF regulating BAD and BAX signaling. Cell Physiol. Biochem. 38, 748–762.10.1159/000443031Suche in Google Scholar PubMed
Siegel, G., Kluba, T., Hermanutz-Klein, U., Bieback, K., Northoff, H., and Schafer, R. (2013). Phenotype, donor age and gender affect function of human bone marrow-derived mesenchymal stromal cells. BMC Med. 11, 146.10.1186/1741-7015-11-146Suche in Google Scholar PubMed PubMed Central
Skolnick, B.E., Maas, A.I., Narayan, R.K., van der Hoop, R.G., MacAllister, T., Ward, J.D., Nelson, N.R., Stocchetti, N., and SYNAPSE Trial Investigators. (2014). A clinical trial of progesterone for severe traumatic brain injury. N. Engl. J. Med. 371, 2467–2476.10.1056/NEJMoa1411090Suche in Google Scholar PubMed
Soleimani, M., and Nadri, S. (2009). A protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. Nat. Protoc. 4, 102–106.10.1038/nprot.2008.221Suche in Google Scholar PubMed
Sordi, V. (2009). Mesenchymal stem cell homing capacity. Transplantation 87, S42–45.10.1097/TP.0b013e3181a28533Suche in Google Scholar PubMed
Sotiropoulou, P.A., Perez, S.A., Gritzapis, A.D., Baxevanis, C.N., and Papamichail, M. (2006). Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells 24, 74–85.10.1634/stemcells.2004-0359Suche in Google Scholar PubMed
Spaggiari, G.M., Capobianco, A., Becchetti, S., Mingari, M.C., and Moretta, L. (2006). Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood 107, 1484–1490.10.1182/blood-2005-07-2775Suche in Google Scholar PubMed
Steingen, C., Brenig, F., Baumgartner, L., Schmidt, J., Schmidt, A., and Bloch, W. (2008). Characterization of key mechanisms in transmigration and invasion of mesenchymal stem cells. J. Mol. Cell. Cardiol. 44, 1072–1084.10.1016/j.yjmcc.2008.03.010Suche in Google Scholar PubMed
Sugiyama, T., Kohara, H., Noda, M., and Nagasawa, T. (2006). Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25, 977–988.10.1016/j.immuni.2006.10.016Suche in Google Scholar PubMed
Sun, D., Bullock, M.R., McGinn, M.J., Zhou, Z., Altememi, N., Hagood, S., Hamm, R., and Colello, R.J. (2009). Basic fibroblast growth factor-enhanced neurogenesis contributes to cognitive recovery in rats following traumatic brain injury. Exp. Neurol. 216, 56–65.10.1016/j.expneurol.2008.11.011Suche in Google Scholar PubMed PubMed Central
Sun, D., Bullock, M.R., Altememi, N., Zhou, Z., Hagood, S., Rolfe, A., McGinn, M.J., Hamm, R., and Colello, R.J. (2010). The effect of epidermal growth factor in the injured brain after trauma in rats. J. Neurotrauma. 27, 923–938.10.1089/neu.2009.1209Suche in Google Scholar PubMed PubMed Central
Sun, J., Wei, Z.Z., Gu, X., Zhang, J.Y., Zhang, Y., Li, J., and Wei, L. (2015). Intranasal delivery of hypoxia-preconditioned bone marrow-derived mesenchymal stem cells enhanced regenerative effects after intracerebral hemorrhagic stroke in mice. Exp. Neurol. 272, 78–87.10.1016/j.expneurol.2015.03.011Suche in Google Scholar PubMed
Taber, K.H., Warden, D.L., and Hurley, R.A. (2006). Blast-related traumatic brain injury: what is known? J. Neuropsychatr. Clin. Neurosci. 18, 141–145.10.1176/jnp.2006.18.2.141Suche in Google Scholar PubMed
Taylor, C.A., Bell, J.M., Breiding, M.J., and Xu, L. (2017). Traumatic brain injury-related emergency department visits, hospitalizations, and deaths – United States, 2007 and 2013. MMWR Surveill. Summ. 66, 1–16.10.15585/mmwr.ss6609a1Suche in Google Scholar PubMed PubMed Central
Thau-Zuchman, O., Shohami, E., Alexandrovich, A.G., and Leker, R.R. (2010). Vascular endothelial growth factor increases neurogenesis after traumatic brain injury. J. Cereb. Blood Flow Metab. 30, 1008–1016.10.1038/jcbfm.2009.271Suche in Google Scholar PubMed PubMed Central
Tian, C., Wang, X., Wang, X., Wang, L., Wang, X., Wu, S., and Wan, Z. (2013). Autologous bone marrow mesenchymal stem cell therapy in the subacute stage of traumatic brain injury by lumbar puncture. Exp. Clin. Transplant 11, 176–181.10.6002/ect.2012.0053Suche in Google Scholar PubMed
Togel, F., Weiss, K., Yang, Y., Hu, Z., Zhang, P., and Westenfelder, C. (2007). Vasculotropic, paracrine actions of infused mesenchymal stem cells are important to the recovery from acute kidney injury. Am. J. Physiol. Renal Physiol. 292, F1626–1635.10.1152/ajprenal.00339.2006Suche in Google Scholar PubMed
Tugwell, B.D., Williams, I.T., Hedberg, K., Chai, F., Nainan, O.V., Thomas, A.R., Woll, J.E., Bell, B.P., and Cieslak, P.R. (2005). Transmission of hepatitis C virus to several organ and tissue recipients from an antibody-negative donor. Ann. Intern. Med. 143, 648–654.10.7326/0003-4819-143-9-200511010-00008Suche in Google Scholar PubMed
Uccelli, A., Moretta, L., and Pistoia, V. (2008). Mesenchymal stem cells in health and disease. Nat. Rev. Immunol. 8, 726–736.10.1038/nri2395Suche in Google Scholar PubMed
Van Vlasselaer, P., Falla, N., Snoeck, H., and Mathieu, E. (1994). Characterization and purification of osteogenic cells from murine bone marrow by two-color cell sorting using anti-Sca-1 monoclonal antibody and wheat germ agglutinin. Blood 84, 753–763.10.1182/blood.V84.3.753.753Suche in Google Scholar PubMed
Vasandan, A.B., Jahnavi, S., Shashank, C., Prasad, P., Kumar, A., and Prasanna, S.J. (2016). Human Mesenchymal stem cells program macrophage plasticity by altering their metabolic status via a PGE2-dependent mechanism. Sci. Rep. 6, 38308.10.1038/srep38308Suche in Google Scholar
Ventura, R.E., Balcer, L.J., and Galetta, S.L. (2014). The neuro-ophthalmology of head trauma. Lancet Neurol. 13, 1006–1016.10.1016/S1474-4422(14)70111-5Suche in Google Scholar PubMed
Vlassov, A.V., Magdaleno, S., Setterquist, R., and Conrad, R. (2012). Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim. Biophys. Acta 1820, 940–948.10.1016/j.bbagen.2012.03.017Suche in Google Scholar PubMed
Wagner, W., Horn, P., Castoldi, M., Diehlmann, A., Bork, S., Saffrich, R., Benes, V., Blake, J., Pfister, S., Eckstein, V., et al. (2008). Replicative senescence of mesenchymal stem cells: a continuous and organized process. PLoS One 3, e2213.10.1371/journal.pone.0002213Suche in Google Scholar PubMed PubMed Central
Walker, P.A., Shah, S.K., Harting, M.T., and Cox, C.S., Jr. (2009). Progenitor cell therapies for traumatic brain injury: barriers and opportunities in translation. Dis. Model. Mech. 2, 23–38.10.1242/dmm.001198Suche in Google Scholar PubMed PubMed Central
Wang, S., Cheng, H., Dai, G., Wang, X., Hua, R., Liu, X., Wang, P., Chen, G., Yue, W., and An, Y. (2013a). Umbilical cord mesenchymal stem cell transplantation significantly improves neurological function in patients with sequelae of traumatic brain injury. Brain Res. 1532, 76–84.10.1016/j.brainres.2013.08.001Suche in Google Scholar PubMed
Wang, Z., Yao, W., Deng, Q., Zhang, X., and Zhang, J. (2013b). Protective effects of BDNF overexpression bone marrow stromal cell transplantation in rat models of traumatic brain injury. J. Mol. Neurosci. 49, 409–416.10.1007/s12031-012-9908-0Suche in Google Scholar PubMed
Wang, Z., Wang, Y., Wang, Z., Gutkind, J.S., Wang, Z., Wang, F., Lu, J., Niu, G., Teng, G., and Chen, X. (2015). Engineered mesenchymal stem cells with enhanced tropism and paracrine secretion of cytokines and growth factors to treat traumatic brain injury. Stem Cells 33, 456–467.10.1002/stem.1878Suche in Google Scholar PubMed
Wang, Z., Luo, Y., Chen, L., and Liang, W. (2017). Safety of neural stem cell transplantation in patients with severe traumatic brain injury. Exp. Ther. Med. 13, 3613–3618.10.3892/etm.2017.4423Suche in Google Scholar PubMed PubMed Central
Wei, L., Wei, Z.Z., Jiang, M.Q., Mohamad, O., and Yu, S.P. (2017). Stem cell transplantation therapy for multifaceted therapeutic benefits after stroke. Prog. Neurobiol. 157, 49–78.10.1016/j.pneurobio.2017.03.003Suche in Google Scholar PubMed PubMed Central
Williams, A.M., Dennahy, I.S., Bhatti, U.F., Halaweish, I., Xiong, Y., Chang, P., Nikolian, V.C., Chtraklin, K., Brown, J., Zhang, Y., et al. (2019). Mesenchymal stem cell-derived exosomes provide neuroprotection and improve long-term neurologic outcomes in a swine model of traumatic brain injury and hemorrhagic shock. J. Neurotrauma 36, 54–60.10.1089/neu.2018.5711Suche in Google Scholar PubMed
Wu, J., Sun, Z., Sun, H.S., Wu, J., Weisel, R.D., Keating, A., Li, Z.H., Feng, Z.P., and Li, R.K. (2008). Intravenously administered bone marrow cells migrate to damaged brain tissue and improve neural function in ischemic rats. Cell Transplant 16, 993–1005.10.3727/000000007783472435Suche in Google Scholar PubMed
Wu, L.W., Wang, Y.L., Christensen, J.M., Khalifian, S., Schneeberger, S., Raimondi, G., Cooney, D.S., Lee, W.P., and Brandacher, G. (2014). Donor age negatively affects the immunoregulatory properties of both adipose and bone marrow derived mesenchymal stem cells. Transpl. Immunol. 30, 122–127.10.1016/j.trim.2014.03.001Suche in Google Scholar PubMed
Xin, H., Li, Y., Cui, Y., Yang, J.J., Zhang, Z.G., and Chopp, M. (2013). Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. J. Cereb. Blood Flow Metab. 33, 1711–1715.10.1038/jcbfm.2013.152Suche in Google Scholar PubMed PubMed Central
Xiong, Y., Qu, C., Mahmood, A., Liu, Z., Ning, R., Li, Y., Kaplan, D.L., Schallert, T., and Chopp, M. (2009). Delayed transplantation of human marrow stromal cell-seeded scaffolds increases transcallosal neural fiber length, angiogenesis, and hippocampal neuronal survival and improves functional outcome after traumatic brain injury in rats. Brain Res. 1263, 183–191.10.1016/j.brainres.2009.01.032Suche in Google Scholar PubMed PubMed Central
Xiong, Y., Mahmood, A., and Chopp, M. (2017). Emerging potential of exosomes for treatment of traumatic brain injury. Neural. Regen. Res. 12, 19–22.10.4103/1673-5374.198966Suche in Google Scholar PubMed PubMed Central
Zaim, M., Karaman, S., Cetin, G., and Isik, S. (2012). Donor age and long-term culture affect differentiation and proliferation of human bone marrow mesenchymal stem cells. Ann. Hematol. 91, 1175–1186.10.1007/s00277-012-1438-xSuche in Google Scholar PubMed
Zanier, E.R., Montinaro, M., Vigano, M., Villa, P., Fumagalli, S., Pischiutta, F., Longhi, L., Leoni, M.L., Rebulla, P., Stocchetti, N., et al. (2011). Human umbilical cord blood mesenchymal stem cells protect mice brain after trauma. Crit. Care Med. 39, 2501–2510.10.1097/CCM.0b013e31822629baSuche in Google Scholar PubMed
Zanier, E.R., Pischiutta, F., Riganti, L., Marchesi, F., Turola, E., Fumagalli, S., Perego, C., Parotto, E., Vinci, P., Veglianese, P., et al. (2014). Bone marrow mesenchymal stromal cells drive protective M2 microglia polarization after brain trauma. Neurotherapeutics 11, 679–695.10.1007/s13311-014-0277-ySuche in Google Scholar PubMed PubMed Central
Zhang, R., Liu, Y., Yan, K., Chen, L., Chen, X.R., Li, P., Chen, F.F., and Jiang, X.D. (2013). Anti-inflammatory and immunomodulatory mechanisms of mesenchymal stem cell transplantation in experimental traumatic brain injury. J. Neuroinflamm. 10, 106.10.1186/1742-2094-10-106Suche in Google Scholar PubMed PubMed Central
Zhang, Y., Chopp, M., Meng, Y., Katakowski, M., Xin, H., Mahmood, A., and Xiong, Y. (2015). Effect of exosomes derived from multipluripotent mesenchymal stromal cells on functional recovery and neurovascular plasticity in rats after traumatic brain injury. J. Neurosurg. 122, 856–867.10.3171/2014.11.JNS14770Suche in Google Scholar PubMed PubMed Central
Zhang, Y., Chopp, M., Zhang, Z.G., Katakowski, M., Xin, H., Qu, C., Ali, M., Mahmood, A., and Xiong, Y. (2016). Systemic administration of cell-free exosomes generated by human bone marrow derived mesenchymal stem cells cultured under 2D and 3D conditions improves functional recovery in rats after traumatic brain injury. Neurochem. Int. 111, 69–81.10.1016/j.neuint.2016.08.003Suche in Google Scholar PubMed PubMed Central
Zhao, Y., Gibb, S.L., Zhao, J., Moore, A.N., Hylin, M.J., Menge, T., Xue, H., Baimukanova, G., Potter, D., Johnson, E.M., et al. (2016a). Wnt3a, a protein secreted by mesenchymal stem cells is neuroprotective and promotes neurocognitive recovery following traumatic brain injury. Stem. Cells 34, 1263–1272.10.1002/stem.2310Suche in Google Scholar PubMed
Zhao, Q.R., Hongying, H., and Zhong, C. (2016b). Mesenchymal stem cells: immunomodulatory capability and clinical potential in immune diseases. J. Cell Immunother. 2, 3–20.10.1016/j.jocit.2014.12.001Suche in Google Scholar
Ziebell, J.M. and Morganti-Kossmann, M.C. (2010). Involvement of pro- and anti-inflammatory cytokines and chemokines in the pathophysiology of traumatic brain injury. Neurotherapeutics 7, 22–30.10.1016/j.nurt.2009.10.016Suche in Google Scholar PubMed PubMed Central
© 2019 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Modification of the gut microbiome to combat neurodegeneration
- Excitation/inhibition imbalance and impaired neurogenesis in neurodevelopmental and neurodegenerative disorders
- Can neuromodulation techniques optimally exploit cerebello-thalamo-cortical circuit properties to enhance motor learning post-stroke?
- Mesenchymal stem cell therapy for the treatment of traumatic brain injury: progress and prospects
- The potentials of umbilical cord-derived mesenchymal stem cells in the treatment of multiple sclerosis
- Role of the GABAA receptors in the long-term cognitive impairments caused by neonatal sevoflurane exposure
- The structure of non-human cognitive neuroscience: an epistemological critique
- A systematic review of brain functional connectivity patterns involved in episodic and semantic memory
Artikel in diesem Heft
- Frontmatter
- Modification of the gut microbiome to combat neurodegeneration
- Excitation/inhibition imbalance and impaired neurogenesis in neurodevelopmental and neurodegenerative disorders
- Can neuromodulation techniques optimally exploit cerebello-thalamo-cortical circuit properties to enhance motor learning post-stroke?
- Mesenchymal stem cell therapy for the treatment of traumatic brain injury: progress and prospects
- The potentials of umbilical cord-derived mesenchymal stem cells in the treatment of multiple sclerosis
- Role of the GABAA receptors in the long-term cognitive impairments caused by neonatal sevoflurane exposure
- The structure of non-human cognitive neuroscience: an epistemological critique
- A systematic review of brain functional connectivity patterns involved in episodic and semantic memory