Home Can neuromodulation techniques optimally exploit cerebello-thalamo-cortical circuit properties to enhance motor learning post-stroke?
Article
Licensed
Unlicensed Requires Authentication

Can neuromodulation techniques optimally exploit cerebello-thalamo-cortical circuit properties to enhance motor learning post-stroke?

  • Sharon Israely EMAIL logo and Gerry Leisman
Published/Copyright: June 5, 2019
Become an author with De Gruyter Brill

Abstract

Individuals post-stroke sustain motor deficits years after the stroke. Despite recent advancements in the applications of non-invasive brain stimulation techniques and Deep Brain Stimulation in humans, there is a lack of evidence supporting their use for rehabilitation after brain lesions. Non-invasive brain stimulation is already in use for treating motor deficits in individuals with Parkinson’s disease and post-stroke. Deep Brain Stimulation has become an established treatment for individuals with movement disorders, such as Parkinson’s disease, essential tremor, epilepsy, cerebral palsy and dystonia. It has also been utilized for the treatment of Tourette’s syndrome, Alzheimer’s disease and neuropsychiatric conditions such as obsessive-compulsive disorder, major depression and anorexia nervosa. There exists growing scientific knowledge from animal studies supporting the use of Deep Brain Stimulation to enhance motor recovery after brain damage. Nevertheless, these results are currently not applicable to humans. This review details the current literature supporting the use of these techniques to enhance motor recovery, both from human and animal studies, aiming to encourage development in this domain.

References

Abdollahi, F., Case Lazarro, E., Listenberger, M., Kenyon, R., Kovic,M., Bogey, R., Hedeker, D., Jovanovic, B.D., and Patton, J.L. (2014). Error augmentation enhancing arm recovery in individuals with chronic stroke: a randomized crossover design. Neurorehabil. Neural. Repair. 28, 120–128.10.1177/1545968313498649Search in Google Scholar PubMed PubMed Central

Abreu, V., Vaz, R., Rebelo, V., Rosas, M.J., Chamadoira, C., Gillies, M.J., Aziz, T.Z., and Pereira, E.A.C. (2017). Thalamic deep brain stimulation for neuropathic pain: efficacy at three years’ follow-up. Neuromodulation 20, 504–513.10.1111/ner.12620Search in Google Scholar PubMed

Allen, G.I. and Tsukahara, N. (1974). Cerebrocerebellar communication systems. Physiol Rev 54, 957–1006.10.1152/physrev.1974.54.4.957Search in Google Scholar PubMed

Alonso-Alonso, M., Fregni, F., and Pascual-Leone, A. (2007). Brain stimulation in poststroke rehabilitation. Cerebrovasc. Dis. 24, 157–166.10.1159/000107392Search in Google Scholar PubMed

Andersson, G., Garwicz, M., and Hesslow, G. (1988). Evidence for a GABA-mediated cerebellar inhibition of the inferior olive in the cat. Exp. Brain Res. 72, 450–456.10.1007/BF00250590Search in Google Scholar PubMed

Aumann, T. and Fetz, E. (2004). Oscillatory activity in forelimb muscles of behaving monkeys evoked by microstimulation in the cerebellar nuclei. Neurosci. Lett. 361, 106–110.10.1016/j.neulet.2003.12.091Search in Google Scholar PubMed

Aumann, T., Rawson, J., and Horne, M. (1998). The relationship between monkey dentate cerebellar nucleus activity and kinematic parameters of wrist movement. Exp. Brain Res. 119, 179–190.10.1007/s002210050332Search in Google Scholar PubMed

Baker, K.B., Schuster, D., Cooperrider, J., and Machado, A.G. (2010). Deep brain stimulation of the lateral cerebellar nucleus produces frequency-specific alterations in motor evoked potentials in the rat in vivo. Exp. Neurol. 226, 259–264.10.1016/j.expneurol.2010.08.019Search in Google Scholar PubMed PubMed Central

Bastian, A.J. (2006). Learning to predict the future: the cerebellum adapts feedforward movement control. Curr. Opin. Neurobiol. 16, 645–649.10.1016/j.conb.2006.08.016Search in Google Scholar PubMed

Benussi, A., Koch, G., Cotelli, M., Padovani, A., and Borroni, B. (2015). Cerebellar transcranial direct current stimulation in patients with ataxia: a double-blind, randomized, sham-controlled study. Movement Disord. 30, 1701–1705.10.1002/mds.26356Search in Google Scholar PubMed

Binda, F., Dorgans, K., Reibel, S., Sakimura, K., Kano, M., Poulain, B., and Isope, P. (2016). Inhibition promotes long-term potentiation at cerebellar excitatory synapses. Sci. Rep. 6, 33561.10.1038/srep33561Search in Google Scholar PubMed PubMed Central

Bobath, B. (1990).Chapter 4: evaluation of motor patterns for initial assessment, planning of treatment and progress. In: Adult hemiplegia: evaluation and treatment, 3rd ed. (Oxford: Heinemann Medical, Elsevier Health Sciences).Search in Google Scholar

Bolognini, N., Vallar, G., Casati, C., Latif, L.A., El-Nazer, R., Williams, J., Banco, E., Macea, D.D., Tesio, L., Chessa, C., et al. (2011). Neurophysiological and behavioral effects of tDCS combined with constraint-induced movement therapy in poststroke patients. Neurorehabil. Neural. Repair 25, 819–829.10.1177/1545968311411056Search in Google Scholar PubMed

Bonni, S., Ponzo, V., Caltagirone, C., and Koch, G. (2014). Cerebellar theta burst stimulation in stroke patients with ataxia. Funct. Neurol. 29, 41–45.10.11138/FNeur/2014.29.1.041Search in Google Scholar PubMed

Boström, S.G., Hurlemann, R., Klein, M.E., Spanier, S., Sajonz, B., Urbach, H., and Schlaepfer, T.E. (2019). Superolateral medial forebrain bundle deep brain stimulation in major depression–A Gateway Trial. Neuropsychopharmacology 44, 1224–1232.10.1038/s41386-019-0369-9Search in Google Scholar PubMed PubMed Central

Brown, J.A., Lutsep, H.L., Weinand, M., and Cramer, S.C. (2006). Motor cortex stimulation for the enhancement of recovery from stroke: a prospective, multicenter safety study. Neurosurgery 58, 464–473.10.1227/01.NEU.0000197100.63931.04Search in Google Scholar PubMed

Brunnstrom, S. (1966). Motor testing procedures in hemiplegia: based on sequential recovery stages. Phys. Ther. 46, 357–375.10.1093/ptj/46.4.357Search in Google Scholar PubMed

Brunnström, S. (1970). Movement therapy in hemiplegia: a neurophysiological approach (New York: Harper and Row).Search in Google Scholar

Brusa, L., Ponzo, V., Mastropasqua, C., Picazio, S., Bonnì, S., Di Lorenzo, F., Iani, C., Stefani, A., Stanzione, P., Caltagirone, C., et al. (2014). Theta burst stimulation modulates cerebellar-cortical connectivity in patients with progressive supranuclear palsy. Brain Stimul. 7, 29–35.10.1016/j.brs.2013.07.003Search in Google Scholar PubMed

Bucur, M. and Papagno, C. (2018). A systematic review of noninvasive brain stimulation for post-stroke depression. J. Affect Disord. 238, 69–78.10.1016/j.jad.2018.05.026Search in Google Scholar PubMed

Cabrera, L.Y., Goudreau, J., and Sidiropoulos, C. (2018). Critical appraisal of the recent US FDA approval for earlier DBS intervention. Neurology 91, 133–136.10.1212/WNL.0000000000005829Search in Google Scholar PubMed

Cantarero, G., Spampinato, D., Reis, J., Ajagbe, L., Thompson, T., Kulkarni, K., and Celnik, P. (2015). Cerebellar direct current stimulation enhances on-line motor skill acquisition through an effect on accuracy. J. Neurosci 35, 3285–3290.10.1523/JNEUROSCI.2885-14.2015Search in Google Scholar PubMed PubMed Central

Casula, E.P., Pellicciari, M.C., Ponzo, V., Bassi, M.S., Veniero, D., Caltagirone, C., and Koch, G. (2016). Cerebellar theta burst stimulation modulates the neural activity of interconnected parietal and motor areas. Sci. Rep. 6, 36191.10.1038/srep36191Search in Google Scholar PubMed PubMed Central

Celnik, P. (2015). Understanding and modulating motor learning with cerebellar stimulation. Cerebellum 14, 171–174.10.1007/s12311-014-0607-ySearch in Google Scholar PubMed PubMed Central

Chan, H.H., Cooperrider, J., Chen, Z., Gale, J.T., Baker, K.B., Wathen, C.A., Modic, C.R., Park, H.J., and Machado, A.G. (2017). Lateral cerebellar nucleus stimulation has selective effects on glutamatergic and GABAergic perilesional neurogenesis after cortical ischemia in the rodent model. Neurosurgery 83, 1057–1067.10.1093/neuros/nyx473Search in Google Scholar PubMed

Chapman, C.E., Spidalieri, G., and Lamarre, Y. (1986). Activity of dentate neurons during arm movements triggered by visual, auditory, and somesthetic stimuli in the monkey. J. Neurophysiol. 55, 203–226.10.1152/jn.1986.55.2.203Search in Google Scholar PubMed

Coffey, R.J. (2009). Deep brain stimulation devices: a brief technical history and review. Artif. Organs 33, 208–220.10.1111/j.1525-1594.2008.00620.xSearch in Google Scholar PubMed

Coffman, B.A., Clark, V.P., and Parasuraman, R. (2014). Battery powered thought: enhancement of attention, learning, and memory in healthy adults using transcranial direct current stimulation. Neuroimage 85, 895–908.10.1016/j.neuroimage.2013.07.083Search in Google Scholar PubMed

Cohen, O., Harel, R., Aumann, T.D., Israel, Z., and Prut, Y. (2017). Parallel processing of internal and external feedback in the spinocerebellar system of primates. J. Neurophysiol. 118, 254–266.10.1152/jn.00825.2016Search in Google Scholar PubMed PubMed Central

Cooperrider, J., Furmaga, H., Plow, E., Park, H.J., Chen, Z., Kidd, G., Baker, K.B., Gale, J.T., and Machado, A.G. (2014). Chronic deep cerebellar stimulation promotes long-term potentiation, microstructural plasticity, and reorganization of perilesional cortical representation in a rodent model. J. Neurosci. 34, 9040–9050.10.1523/JNEUROSCI.0953-14.2014Search in Google Scholar PubMed PubMed Central

Daskalakis, Z.J., Paradiso, G.O., Christensen, B.K., Fitzgerald, P.B., Gunraj, C., and Chen, R. (2004). Exploring the connectivity between the cerebellum and motor cortex in humans. J. Physiol. (Lond) 557, 689–700.10.1113/jphysiol.2003.059808Search in Google Scholar PubMed PubMed Central

De Zeeuw, C., Holstege, J., Ruigrok, T., and Voogd, J. (1989). Ultrastructural study of the GABAergic, cerebellar, and mesodiencephalic innervation of the cat medial accessory olive: anterograde tracing combined with immunocytochemistry. J. Comp. Neurol. 284, 12–35.10.1002/cne.902840103Search in Google Scholar PubMed

De Zeeuw, C.I., Hoogenraad, C.C., Koekkoek, S., Ruigrok, T.J., Galjart, N., and Simpson, J.I. (1998). Microcircuitry and function of the inferior olive. Trends Neurosci. 21, 391–400.10.1016/S0166-2236(98)01310-1Search in Google Scholar PubMed

Devlin, J.T. and Watkins, K.E. (2006). Stimulating language: insights from TMS. Brain 130, 610–622.10.1093/brain/awl331Search in Google Scholar PubMed PubMed Central

Dickstein, R., Hocherman, S., Pillar, T., and Shaham, R. (1986). Stroke rehabilitation: three exercise therapy approaches. Phys. Ther. 66, 1233–1238.10.1093/ptj/66.8.1233Search in Google Scholar PubMed

Elias, G.J.B., Namasivayam, A.A., and Lozano, A.M. (2018). Deep brain stimulation for stroke: current uses and future directions. Brain Stimul. 11, 3–28.10.1016/j.brs.2017.10.005Search in Google Scholar PubMed

Farrar, D.C., Mian, A.Z., Budson, A.E., Moss, M.B., and Killiany, R.J. (2018). Functional brain networks involved in decision-making under certain and uncertain conditions. Neuroradiology 60, 61–69.10.1007/s00234-017-1949-1Search in Google Scholar PubMed PubMed Central

Feil, J. and Zangen, A. (2010). Brain stimulation in the study and treatment of addiction. Neurosci. Biobehav. Rev. 34, 559–574.10.1016/j.neubiorev.2009.11.006Search in Google Scholar PubMed

Figlewski, K., Blicher, J.U., Mortensen, J., Severinsen, K.E., Nielsen, J.F., and Andersen, H. (2017). Transcranial direct current stimulation potentiates improvements in functional ability in patients with chronic stroke receiving constraint-induced movement therapy. Stroke 48, 229–232.10.1161/STROKEAHA.116.014988Search in Google Scholar PubMed

Fins, J.J., Mayberg, H.S., Nuttin, B., Kubu, C.S., Galert, T., Sturm, V., Stoppenbrink, K., Merkel, R., and Schlaepfer, T.E. (2011). Misuse of the FDA’s humanitarian device exemption in deep brain stimulation for obsessive-compulsive disorder. Health Aff. (Millwood). 30, 302–311.10.1377/hlthaff.2010.0157Search in Google Scholar PubMed

Fregni, F. and Pascual-Leone, A. (2007). Technology insight: noninvasive brain stimulation in neurology – perspectives on the therapeutic potential of rTMS and tDCS. Nat. Rev. Neurol. 3, 383.10.1038/ncpneuro0530Search in Google Scholar PubMed

Fregni, F., Boggio, P.S., Mansur, C.G., Wagner, T., Ferreira, M.J., Lima, M.C., Rigonatti, S.P., Marcolin, M.A., Freedman, S.D., Nitsche, M.A., et al. (2005). Transcranial direct current stimulation of the unaffected hemisphere in stroke patients. Neuroreport 16, 1551–1555.10.1097/01.wnr.0000177010.44602.5eSearch in Google Scholar PubMed

Fregni, F., Gimenes, R., Valle, A.C., Ferreira, M.J., Rocha, R.R., Natalle, L., Bravo, R., Rigonatti, S.P., Freedman, S.D., Nitsche, M.A., et al. (2006). A randomized, sham – controlled, proof of principle study of transcranial direct current stimulation for the treatment of pain in fibromyalgia. Arthritis Rheum. 54, 3988–3998.10.1002/art.22195Search in Google Scholar PubMed

Galanda, M. and Hovath, S. (1997). Different effect of chronic electrical stimulation of the region of the superior cerebellar peduncle and the nucleus ventralis intermedius of the thalamus in the treatment of movement disorders. Stereotact. Funct. Neurosurg. 69, 116–120.10.1159/000099861Search in Google Scholar PubMed

Galea, J.M., Jayaram, G., Ajagbe, L., and Celnik, P. (2009). Modulation of cerebellar excitability by polarity-specific noninvasive direct current stimulation. J. Neurosci. 29, 9115–9122.10.1523/JNEUROSCI.2184-09.2009Search in Google Scholar PubMed PubMed Central

Galea, J.M., Vazquez, A., Pasricha, N., Orban de Xivry, J., and Celnik, P. (2010). Dissociating the roles of the cerebellum and motor cortex during adaptive learning: the motor cortex retains what the cerebellum learns. Cereb. Cortex 21, 1761–1770.10.1093/cercor/bhq246Search in Google Scholar PubMed PubMed Central

Gellman, R., Gibson, A.R., and Houk, J.C. (1985). Inferior olivary neurons in the awake cat: detection of contact and passive body displacement. J. Neurophysiol. 54, 40–60.10.1152/jn.1985.54.1.40Search in Google Scholar PubMed

George, M.S., Nahas, Z., Borckardt, J.J., Anderson, B., Foust, M.J., Burns, C., Kose, S., and Short, E.B. (2007). Brain stimulation for the treatment of psychiatric disorders. Curr. Opin. Psychiatry 20, 250–254.10.1097/YCO.0b013e3280ad4698Search in Google Scholar PubMed

Gordon, P.C., Valiengo, L.D.C.L., de Paula, V.J.R., Galhardoni, R., Ziemann, U., de Andrade, D.C., and Brunoni, A.R. (2019). Changes in motor cortical excitability in schizophrenia following transcranial direct current stimulation. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 90, 43–48.10.1016/j.pnpbp.2018.11.004Search in Google Scholar PubMed

Grimaldi, G., Argyropoulos, G., Boehringer, A., Celnik, P., Edwards, M., Ferrucci, R., Galea, J.M., Groiss, S.J., Hiraoka, K., Kassavetis, P., et al. (2014). Non-invasive cerebellar stimulation – a consensus paper. Cerebellum 13, 121–138.10.1007/s12311-013-0514-7Search in Google Scholar PubMed

Grimaldi, G., Argyropoulos, G.P., Bastian, A., Cortes, M., Davis, N.J., Edwards, D.J., Ferrucci, R., Fregni, F., Galea, J.M., Hamada, M., et al. (2016). Cerebellar Transcranial Direct Current Stimulation (ctDCS) a novel approach to understanding cerebellar function in health and disease. Neuroscientist 22, 83–97.10.1177/1073858414559409Search in Google Scholar PubMed PubMed Central

Groppa, S., Oliviero, A., Eisen, A., Quartarone, A., Cohen, L., Mall, V., Kaelin-Lang, A., Mima, T., Rossi, S., Thickbroom, G.W., et al. (2012). A practical guide to diagnostic transcranial magnetic stimulation: report of an IFCN committee. Clin. Neurophysiol. 123, 858–882.10.1016/j.clinph.2012.01.010Search in Google Scholar PubMed PubMed Central

Hallett, M. (2000). Transcranial magnetic stimulation and the human brain. Nature 406, 147.10.1038/35018000Search in Google Scholar PubMed

Hamoudi, M., Schambra, H.M., Fritsch, B., Schoechlin-Marx, A., Weiller, C., Cohen, L.G., and Reis, J. (2018). Transcranial direct current stimulation enhances motor skill learning but not generalization in chronic stroke. Neurorehabil. Neural. Repair 32, 295–308.10.1177/1545968318769164Search in Google Scholar PubMed

Harat, M., Radziszewski, K., Rudas, M., Okon, M., and Galanda, M. (2009). Clinical evaluation of deep cerebellar stimulation for spasticity in patients with cerebral palsy. Neurol. Neurochir. Pol. 43, 36–44.Search in Google Scholar PubMed

Harvey, R., Porter, R., and Rawson, J. (1979). Discharges of intracerebellar nuclear cells in monkeys. J. Physiol. (Lond) 297, 559–580.10.1113/jphysiol.1979.sp013057Search in Google Scholar PubMed

Herwig, U., Padberg, F., Unger, J., Spitzer, M., and Schönfeldt-Lecuona, C. (2001). Transcranial magnetic stimulation in therapy studies: examination of the reliability of “standard” coil positioning by neuronavigation. Biol. Psychiatry 50, 58–61.10.1016/S0006-3223(01)01153-2Search in Google Scholar PubMed

Herzfeld, D.J., Pastor, D., Haith, A.M., Rossetti, Y., Shadmehr, R., and O’shea, J. (2014). Contributions of the cerebellum and the motor cortex to acquisition and retention of motor memories. Neuroimage 98, 147–158.10.1016/j.neuroimage.2014.04.076Search in Google Scholar PubMed PubMed Central

Hubble, J.P., Busenbark, K.L., Wilkinson, S., Penn, R.D., Lyons, K., and Koller, W.C. (1996). Deep brain stimulation for essential tremor. Neurology 46, 1150–1153.10.1212/WNL.46.4.1150Search in Google Scholar PubMed

Hummel, F., Celnik, P., Giraux, P., Floel, A., Wu, W., Gerloff, C., and Cohen, L.G. (2005). Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain 128, 490–499.10.1093/brain/awh369Search in Google Scholar PubMed

Hummel, F.C., Voller, B., Celnik, P., Floel, A., Giraux, P., Gerloff, C., and Cohen, L.G. (2006). Effects of brain polarization on reaction times and pinch force in chronic stroke. BMC Neurosci. 7, 73.10.1186/1471-2202-7-73Search in Google Scholar PubMed PubMed Central

Ishikawa, T., Tomatsu, S., Tsunoda, Y., Hoffman, D.S., and Kakei, S. (2014a). Mossy fibers in the cerebellar hemisphere show delay activity in a delayed response task. Neurosci. Res. 87, 84–89.10.1016/j.neures.2014.07.006Search in Google Scholar PubMed

Ishikawa, T., Tomatsu, S., Tsunoda, Y., Lee, J., Hoffman, D.S., and Kakei, S. (2014b). Releasing dentate nucleus cells from Purkinje cell inhibition generates output from the cerebrocerebellum. PLoS One 9, e108774.10.1371/journal.pone.0108774Search in Google Scholar PubMed PubMed Central

Ishikawa, T., Tomatsu, S., Izawa, J., and Kakei, S. (2016). The cerebro-cerebellum: Could it be loci of forward models? Neurosci. Res. 104, 72–79.10.1016/j.neures.2015.12.003Search in Google Scholar PubMed

Iwata, N.K. and Ugawa, Y. (2005). The effects of cerebellar stimulation on the motor cortical excitability in neurological disorders: a review. Cerebellum 4, 218.10.1080/14734220500277007Search in Google Scholar PubMed

Jayaram, G., Galea, J.M., Bastian, A.J., and Celnik, P. (2011). Human locomotor adaptive learning is proportional to depression of cerebellar excitability. Cereb. Cortex 21, 1901–1909.10.1093/cercor/bhq263Search in Google Scholar PubMed PubMed Central

Jorntell, H. and Ekerot, C.F. (2006). Properties of somatosensory synaptic integration in cerebellar granule cells in vivo. J. Neurosci. 26, 11786–11797.10.1523/JNEUROSCI.2939-06.2006Search in Google Scholar PubMed PubMed Central

Khedr, E.M., Ahmed, M.A., Fathy, N., and Rothwell, J.C. (2005). Therapeutic trial of repetitive transcranial magnetic stimulation after acute ischemic stroke. Neurology 65, 466–468.10.1212/01.wnl.0000173067.84247.36Search in Google Scholar PubMed

Kim, W., Jung, S.H., Oh, M.K., Min, Y.S., Lim, J.Y., and Paik, N. (2014). Effect of repetitive transcranial magnetic stimulation over the cerebellum on patients with ataxia after posterior circulation stroke: a pilot study. J. Rehabil. Med. 46, 418–423.10.2340/16501977-1802Search in Google Scholar PubMed

Kinoshita, M., Nakataki, M., Morigaki, R., Sumitani, S., Goto, S., Kaji, R., and Ohmori, T. (2018). Turning on the left side electrode changed depressive state to manic state in a Parkinson’s disease patient who received bilateral subthalamic nucleus deep brain stimulation: a case report. Clin. Psychopharmacol. Neurosci. 16, 494–496.10.9758/cpn.2018.16.4.494Search in Google Scholar PubMed PubMed Central

Kitago, T., Liang, J., Huang, V.S., Hayes, S., Simon, P., Tenteromano, L., Lazar, R.M., Marshall, R.S., Mazzoni, P., Lennihan, L., et al. (2013). Improvement after constraint-induced movement therapy: recovery of normal motor control or task-specific compensation? Neurorehabil. Neural Repair 27, 99–109.10.1177/1545968312452631Search in Google Scholar PubMed

Koch, G., Mori, F., Marconi, B., Codecà, C., Pecchioli, C., Salerno, S., Torriero, S., Lo Gerfo, E., Mir, P., Oliveri, M., et al. (2008). Changes in intracortical circuits of the human motor cortex following theta burst stimulation of the lateral cerebellum. Clin. Neurophysiol. 119, 2559–2569.10.1016/j.clinph.2008.08.008Search in Google Scholar PubMed

Koch, G., Brusa, L., Carrillo, F., Lo Gerfo, E., Torriero, S., Oliveri, M., Mir, P., Caltagirone, C., and Stanzione, P. (2009). Cerebellar magnetic stimulation decreases levodopa-induced dyskinesias in Parkinson disease. Neurology 73, 113–119.10.1212/WNL.0b013e3181ad5387Search in Google Scholar PubMed

Koch, G., Porcacchia, P., Ponzo, V., Carrillo, F., Cáceres-Redondo, M.T., Brusa, L., Desiato, M.T., Arciprete, F., Di Lorenzo, F., Pisani,A., et al. (2014). Effects of two weeks of cerebellar theta burst stimulation in cervical dystonia patients. Brain Stimul. 7, 564–572.10.1016/j.brs.2014.05.002Search in Google Scholar PubMed

Koch, G., Bonnì, S., Casula, E.P., Iosa, M., Paolucci, S., Pellicciari, M.C., Cinnera, A.M., Ponzo, V., Maiella, M., Picazio, S., et al. (2019). Effect of cerebellar stimulation on gait and balance recovery in patients with hemiparetic stroke: a randomized clinical trial. JAMA Neurol. 76, 170–178.10.1001/jamaneurol.2018.3639Search in Google Scholar PubMed PubMed Central

Koo, W.R., Jang, B.H., and Kim, C.R. (2018). Effects of anodal transcranial direct current stimulation on somatosensory recovery after stroke: a randomized controlled trial. Am. J. Phys. Med. Rehabil. 97, 507–513.10.1097/PHM.0000000000000910Search in Google Scholar PubMed

Laakso, I., Murakami, T., Hirata, A., and Ugawa, Y. (2018). Where and what TMS activates: experiments and modeling. Brain Stimul. 11, 166–174.10.1016/j.brs.2017.09.011Search in Google Scholar PubMed

Levin, M.F. (2016). Principles of motor recovery after neurological injury based on a motor control theory. In: J. Laczko, M. L. Latash, eds. Progress in Motor Control (Cham, Springer), pp. 121–140.10.1007/978-3-319-47313-0_7Search in Google Scholar PubMed

Luque, N.R., Garrido, J.A., Naveros, F., Carrillo, R.R., D’Angelo, E., and Ros, E. (2016). Distributed cerebellar motor learning: a spike-timing-dependent plasticity model. Front Comput. Neurosci. 10, 17.10.3389/fncom.2016.00017Search in Google Scholar PubMed PubMed Central

Machado, A.G., Baker, K.B., Schuster, D., Butler, R.S., and Rezai, A. (2009). Chronic electrical stimulation of the contralesional lateral cerebellar nucleus enhances recovery of motor function after cerebral ischemia in rats. Brain Res. 1280, 107–116.10.1016/j.brainres.2009.05.007Search in Google Scholar PubMed PubMed Central

Machado, A.G., Cooperrider, J., Furmaga, H.T., Baker, K.B., Park, H., Chen, Z., and Gale, J.T. (2013). Chronic 30-Hz deep cerebellar stimulation coupled with training enhances post-ischemia motor recovery and peri-infarct synaptophysin expression in rodents. Neurosurgery 73, 344–353.10.1227/01.neu.0000430766.80102.acSearch in Google Scholar PubMed

Mano, N., Kanazawa, I., and Yamamoto, K. (1986). Complex-spike activity of cerebellar Purkinje cells related to wrist tracking movement in monkey. J. Neurophysiol. 56, 137–158.10.1152/jn.1986.56.1.137Search in Google Scholar PubMed

Manor, B., Greenstein, P.E., Davila-Perez, P., Wakefield, S., Zhou, J., and Pascual-Leone, A. (2019). Repetitive transcranial magnetic stimulation in spinocerebellar ataxia: a pilot randomized controlled trial. Front Neurol. 10, 73.10.3389/fneur.2019.00073Search in Google Scholar PubMed PubMed Central

Mansur, C.G., Fregni, F., Boggio, P.S., Riberto, M., Gallucci-Neto, J., Santos, C.M., Wagner, T., Rigonatti, S.P., Marcolin, M.A., and Pascual-Leone, A. (2005). A sham stimulation-controlled trial of rTMS of the unaffected hemisphere in stroke patients. Neurology 64, 1802–1804.10.1212/01.WNL.0000161839.38079.92Search in Google Scholar PubMed

Montgomery, E.B. (2004). Deep brain stimulation for hyperkinetic disorders. Neurosurg. Focus 17, 1–8.10.1093/med/9780199338825.003.0015Search in Google Scholar

Monti, A., Cogiamanian, F., Marceglia, S., Ferrucci, R., Mameli, F., Mrakic-Sposta, S., Vergari, M., Zago, S., and Priori, A. (2008). Improved naming after transcranial direct current stimulation in aphasia. J. Neurol. Neurosurg. Psychiatry 79, 451–453.10.1136/jnnp.2007.135277Search in Google Scholar PubMed

Nagel, S.J. and Najm, I.M. (2009). Deep brain stimulation for epilepsy. Neuromodulation 12, 270–280.10.1111/j.1525-1403.2009.00239.xSearch in Google Scholar PubMed

Nashef, A., Rapp, H., Nawrot, M.P., and Prut, Y. (2018). Area-specific processing of cerebellar-thalamo-cortical information in primates. Biol. Cybern 112, 141–152.10.1007/s00422-017-0738-6Search in Google Scholar PubMed

Nitsche, M.A., Schauenburg, A., Lang, N., Liebetanz, D., Exner, C., Paulus, W., and Tergau, F. (2003). Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. J. Cogn. Neurosci. 15, 619–626.10.1162/089892903321662994Search in Google Scholar PubMed

Nitsche, M.A., Cohen, L.G., Wassermann, E.M., Priori, A., Lang, N., Antal, A., Paulus, W., Hummel, F., Boggio, P.S., Fregni, F., et al. (2008). Transcranial direct current stimulation: state of the art 2008. Brain Stimul. 1, 206–223.10.1016/j.brs.2008.06.004Search in Google Scholar PubMed

Park, H., Furmaga, H., Cooperrider, J., Gale, J.T., Baker, K.B., and Machado, A.G. (2015). Modulation of cortical motor evoked potential after stroke during electrical stimulation of the lateral cerebellar nucleus. Brain Stimul. 8, 1043–1048.10.1016/j.brs.2015.06.020Search in Google Scholar PubMed PubMed Central

Pascual-Leone, A., Bartres-Faz, D., and Keenan, J.P. (1999). Transcranial magnetic stimulation: studying the brain-behaviour relationship by induction of ‘virtual lesions’. Philos. Trans. R Soc. Lond. B Biol. Sci. 354, 1229–1238.10.1098/rstb.1999.0476Search in Google Scholar PubMed PubMed Central

Perestelo-Pérez, L., Rivero-Santana, A., Pérez-Ramos, J., Serrano-Pérez, P., Panetta, J., and Hilarion, P. (2014). Deep brain stimulation in Parkinson’s disease: meta-analysis of randomized controlled trials. J. Neurol. 261, 2051–2060.10.1007/s00415-014-7254-6Search in Google Scholar PubMed

Pinto, A.D. and Chen, R. (2001). Suppression of the motor cortex by magnetic stimulation of the cerebellum. Exp. Brain Res. 140, 505–510.10.1007/s002210100862Search in Google Scholar PubMed

Rao, S.M., Harrington, D.L., Haaland, K.Y., Bobholz, J.A., Cox, R.W., and Binder, J.R. (1997). Distributed neural systems underlying the timing of movements. J. Neurosci. 17, 5528–5535.10.1523/JNEUROSCI.17-14-05528.1997Search in Google Scholar PubMed

Rao, V.R., Sellers, K.K., Wallace, D.L., Lee, M.B., Bijanzadeh, M., Sani, O.G., Yang, Y., Shanechi, M.M., Dawes, H.E., and Chang, E.F. (2018). Direct electrical stimulation of lateral orbitofrontal cortex acutely improves mood in individuals with symptoms of depression. Curr. Biol. 28, 3893–3902.e4.10.1016/j.cub.2018.10.026Search in Google Scholar PubMed

Reis, J., Schambra, H.M., Cohen, L.G., Buch, E.R., Fritsch, B., Zarahn, E., Celnik, P.A., and Krakauer, J.W. (2009). Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proc. Natl. Acad. Sci. USA 106, 1590–1595.10.1073/pnas.0805413106Search in Google Scholar PubMed PubMed Central

San-juan, D., Morales-Quezada, L., Garduño, A.J.O., Alonso-Vanegas, M., González-Aragón, M.F., López, D.A.E., Vázquez Gregorio, R., Anschel, D.J., and Fregni, F. (2015). Transcranial direct current stimulation in epilepsy. Brain Stimul. 8, 455–464.10.1016/j.brs.2015.01.001Search in Google Scholar PubMed

Schlerf, J.E., Galea, J.M., Bastian, A.J., and Celnik, P.A. (2012). Dynamic modulation of cerebellar excitability for abrupt, but not gradual, visuomotor adaptation. J. Neurosci. 32, 11610–11617.10.1523/JNEUROSCI.1609-12.2012Search in Google Scholar PubMed PubMed Central

Sebastian, R., Saxena, S., Tsapkini, K., Faria, A.V., Long, C., Wright, A., Davis, C., Tippett, D.C., Mourdoukoutas, A.P., Marom Bikson, M., et al. (2017). Cerebellar tDCS: a novel approach to augment language treatment post-stroke. Front Hum. Neurosci. 10, 695.10.3389/fnhum.2016.00695Search in Google Scholar PubMed PubMed Central

Shadmehr, R. and Krakauer, J.W. (2008). A computational neuroanatomy for motor control. Exp. Brain Res. 185, 359–381.10.1007/s00221-008-1280-5Search in Google Scholar PubMed PubMed Central

Shadmehr, R., Smith, M.A., and Krakauer, J.W. (2010). Error correction, sensory prediction, and adaptation in motor control. Annu. Rev. Neurosci. 33, 89–108.10.1146/annurev-neuro-060909-153135Search in Google Scholar PubMed

Spampinato, D. and Celnik, P. (2017). Temporal dynamics of cerebellar and motor cortex physiological processes during motor skill learning. Sci. Rep. 7, 40715.10.1038/srep40715Search in Google Scholar PubMed PubMed Central

Spampinato, D.A., Block, H.J., and Celnik, P.A. (2017). Cerebellar-M1 connectivity changes associated with motor learning are somatotopic specific. J. Neurosci. 37, 2377–2386.10.1523/JNEUROSCI.2511-16.2017Search in Google Scholar PubMed

Strick, P.L. (1983). The influence of motor preparation on the response of cerebellar neurons to limb displacements. J. Neurosci. 3, 2007–2020.10.1523/JNEUROSCI.03-10-02007.1983Search in Google Scholar PubMed

Takeuchi, N., Chuma, T., Matsuo, Y., Watanabe, I., and Ikoma, K. (2005). Repetitive transcranial magnetic stimulation of contralesional primary motor cortex improves hand function after stroke. Stroke 36, 2681–2686.10.1161/01.STR.0000189658.51972.34Search in Google Scholar PubMed

Tecchio, F., Zappasodi, F., Assenza, G., Tombini, M., Vollaro, S., Barbati, G., and Rossini, P.M. (2010). Anodal transcranial direct current stimulation enhances procedural consolidation. J. Neurophysiol. 104, 1134–1140.10.1152/jn.00661.2009Search in Google Scholar PubMed

Thach, W.T. (1970). Discharge of cerebellar neurons related to two maintained postures and two prompt movements. II. Purkinje cell output and input. J. Neurophysiol. 33, 537–547.10.1152/jn.1970.33.4.537Search in Google Scholar

Thach, W. (1975). Timing of activity in cerebellar dentate nucleus and cerebral motor cortex during prompt volitional movement. Brain Res. 88, 233–241.10.1016/0006-8993(75)90387-XSearch in Google Scholar PubMed

Torriero, S., Oliveri, M., Koch, G., Lo Gerfo, E., Salerno, S., Ferlazzo, F., Caltagirone, C., and Petrosini, L. (2011). Changes in cerebello-motor connectivity during procedural learning by actual execution and observation. J. Cogn. Neurosci. 23, 338–348.10.1162/jocn.2010.21471Search in Google Scholar PubMed

Tremblay, S., Austin, D., Hannah, R., and Rothwell, J.C. (2016). Non-invasive brain stimulation as a tool to study cerebellar-M1 interactions in humans. Cerebellum Ataxias 3, 19.10.1186/s40673-016-0057-zSearch in Google Scholar PubMed PubMed Central

Ugawa, Y., Day, B., Rothwell, J., Thompson, P., Merton, P., and Marsden, C. (1991). Modulation of motor cortical excitability by electrical stimulation over the cerebellum in man. J. Physiol. (Lond) 441, 57–72.10.1113/jphysiol.1991.sp018738Search in Google Scholar PubMed PubMed Central

Ugawa, Y., Uesaka, Y., Terao, Y., Hanajima, R., and Kanazawa, I. (1995). Magnetic stimulation over the cerebellum in humans. Ann. Neurol. 37, 703–713.10.1002/ana.410370603Search in Google Scholar PubMed

Vidailhet, M., Vercueil, L., Houeto, J., Krystkowiak, P., Benabid, A., Cornu, P., Lagrange, C., Tézenas du Montcel, S., Dormont, D., Grand, S., et al. (2005). Bilateral deep-brain stimulation of the globus pallidus in primary generalized dystonia. N. Engl. J. Med. 352, 459–467.10.1056/NEJMoa042187Search in Google Scholar PubMed

Wathen, C.A., Frizon, L.A., Maiti, T.K., Baker, K.B., and Machado, A.G. (2018). Deep brain stimulation of the cerebellum for poststroke motor rehabilitation: from laboratory to clinical trial. Neurosurg. Focus 45, E13.10.3171/2018.5.FOCUS18164Search in Google Scholar PubMed

Wessel, M.J., Zimerman, M., and Hummel, F.C. (2015a). Non-invasive brain stimulation: an interventional tool for enhancing behavioral training after stroke. Front Hum. Neurosci. 9, 265.10.3389/fnhum.2015.00265Search in Google Scholar PubMed PubMed Central

Wessel, M.J., Zimerman, M., Timmermann, J.E., Heise, K.F., Gerloff, C., and Hummel, F.C. (2015b). Enhancing consolidation of a new temporal motor skill by cerebellar noninvasive stimulation. Cereb. Cortex 26, 1660–1667.10.1093/cercor/bhu335Search in Google Scholar PubMed

Williams, J.A., Pascual-Leone, A., and Fregni, F. (2010). Interhemispheric modulation induced by cortical stimulation and motor training. Phys. Ther. 90, 398–410.10.2522/ptj.20090075Search in Google Scholar PubMed

Zimerman, M., Nitsch, M., Giraux, P., Gerloff, C., Cohen, L.G., and Hummel, F.C. (2013). Neuroenhancement of the aging brain: restoring skill acquisition in old subjects. Ann. Neurol. 73, 10–15.10.1002/ana.23761Search in Google Scholar PubMed PubMed Central

Received: 2019-01-12
Accepted: 2019-04-11
Published Online: 2019-06-05
Published in Print: 2019-11-26

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 21.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revneuro-2019-0008/html
Scroll to top button