The neurophysiology of working memory development: from childhood to adolescence and young adulthood
-
Carlos M. Gómez
, Catarina Isabel Barriga-Paulino
, Elena Isabel Rodríguez-Martínez , Ma Ángeles Rojas-Benjumea , Antonio Arjona und Jaime Gómez-González
Abstract
Working memory (WM) is an important cognitive function that is necessary to perform our daily activities. The present review briefly describes the most accepted models underlying WM and the neural networks involved in its processing. The review focuses on how the neurophysiological mechanisms develop with age in the periods from childhood to adolescence and young adulthood. Studies using behavioral, neuroimaging, and electrophysiological techniques showed the progress of WM throughout the development. The present review focuses on the neurophysiology of the basic processes underlying WM operations, as indicated by electroencephalogram-derived signals, in order to take advantage of the excellent time resolution of this technique. Children and adults use similar cerebral mechanisms and areas to encode, recognize, and keep the stimuli in memory and update the WM contents, although adults rely more on anterior sites. The possibility that a functional reorganization of WM brain processing occurs around the adolescent period is suggested, and would partly justify the high prevalence of the emergence of mental pathology in the adolescent period.
Acknowledgments
This work has been possible thanks to grants from the Ministry of Science and Innovation PSI2013-47506-R and PSI2016-80059-R (FEDER funds from the EU), and from the Consejería de Innovación, Ciencia y Empresa of the Junta de Andalucía. We thank to prof. Santiago Pelegrina for the careful review of this manuscript.
References
Baddeley, A. (1992). Working memory. Science 255, 556–559.10.1126/science.1736359Suche in Google Scholar PubMed
Baddeley, A. (1996). The fractionation of working memory. Proc. Natl. Acad. Sci. USA 93, 13468–13472.10.1073/pnas.93.24.13468Suche in Google Scholar
Baddeley, A. (1998). Working memory. Acad. Sci. 321, 167–173.10.1016/S0764-4469(97)89817-4Suche in Google Scholar
Baddeley, A. (2012). Working memory: theories, models, and controversies. Annu. Rev. Psychol. 63, 1–29.10.1146/annurev-psych-120710-100422Suche in Google Scholar PubMed
Baddeley, A.D. and Hitch, G. (1974). Working Memory. The Psychology of Learning and Motivation: Adv. Res. Theor. Vol. 8. G. H. Bower, ed. (New York: Academic Press), pp. 47–89.10.1016/S0079-7421(08)60452-1Suche in Google Scholar
Barceló, F., Martín-Loeches, M., and Rubia, F.J. (1997). Event-related potentials during memorization of spatial locations in the auditory and visual modalities. Electroen. Clin. Neurophysiol. 103, 257–267.10.1016/S0013-4694(97)96610-4Suche in Google Scholar
Barceló, F., Periañez, J.A., and Knight, R.T. (2002). Think differently: a brain orienting response to task novelty. Neuroreport 13, 1887–1892.10.1097/00001756-200210280-00011Suche in Google Scholar PubMed
Barrett, S.E., Rugg, M.D., and Perrett, D.I. (1988). Event-related potentials and the matching of familiar and unfamiliar faces. Neuropsychologia 26, 105–117.10.1016/0028-3932(88)90034-6Suche in Google Scholar PubMed
Barriga-Paulino, C.I., Flores, A.B., Rodríguez-Martínez, E.I., Chinchilla, C., and Gómez, C.M. (2013). Multivariate and wavelet techniques of spontaneous electroencephalography and event related potentials during children maturation – the role of phase resetting. J. Biomed. Sci. Eng. 6, 669–682.10.4236/jbise.2013.66082Suche in Google Scholar
Barriga-Paulino, C.I., Rodríguez-Martínez, E.I., Rojas-Benjumea, M.A., and Gómez, C M. (2014). Slow wave maturation on a visual working memory task. Brain Cognit. 88, 43–54.10.1016/j.bandc.2014.04.003Suche in Google Scholar PubMed
Barriga-Paulino, C.I., Rodríguez-Martínez, E.I., Rojas-Benjumea, M.A., and Gómez, C.M. (2015a). Electrophysiological evidence of a delay in the visual selection process in youngest children. Front. Hum. Neurosci. 9, 622.10.3389/fnhum.2015.00622Suche in Google Scholar
Barriga-Paulino, C.I., Rojas-Benjumea, M.A., Rodríguez-Martínez, E.I., and Gómez, C.M. (2015b). Fronto-temporo-occipital activity changes with age during a visual working memory developmental study in children, adolescents and adults. Neurosci. Lett. 599, 26–31.10.1016/j.neulet.2015.05.017Suche in Google Scholar
Barriga-Paulino, C.I., Rodríguez-Martínez, E.I., Rojas-Benjumea, M.A., and Gómez, C.M. (2016). Principal component analysis of working memory variables during child and adolescent development. Spanish J. Psychol. 19, e62, 1–13.10.1017/sjp.2016.64Suche in Google Scholar
Barriga-Paulino, C.I., Rodríguez-Martínez, E.I., Arjona, A., Morales, M., and Gómez, C.M. (2017). Developmental trajectories of event related potentials related to working memory. Neuropsychologia 95, 215–226.10.1016/j.neuropsychologia.2016.12.026Suche in Google Scholar PubMed
Barrouillet, P., Gavens, N., Vergauwe, E., Gaillard, V., and Camos, V. (2009). Working memory span development: a time-based resource-sharing model account. Dev. Psychol. 45, 477–490.10.1037/a0014615Suche in Google Scholar PubMed
Basar-Eroglu, C., Basar, E., Demiralp, T., and Schürmann, M. (1992). P300-response: possible psychophysiological correlates in delta and theta frequency channels. A review. Int. J. Psychophysiol. 13, 161–179.10.1016/0167-8760(92)90055-GSuche in Google Scholar
Bear, M.F., Paradiso, M.A., and Connors, B.W. (2001). Neuroscience: Exploring the Brain. 2nd ed (Philadelphia: Williams and Wilkins/Lippincott).Suche in Google Scholar
Bender, S., Weisbrod, M., Bornfleth, H., Resch, F., and Oelkers-Ax, R. (2005). How do children prepare to react? Imaging maturation of motor preparation and stimulus anticipation by late contingent negative variation. Neuroimage 27, 737–752.10.1016/j.neuroimage.2005.05.020Suche in Google Scholar PubMed
Berti, S., Geissler, H-G., Lachmann, T., and Mecklinger, A. (2000). Event-related brain potentials dissociate visual working memory processes under categorical and identical comparison conditions. Cognit. Brain Res. 9, 147–155.10.1016/S0926-6410(99)00051-8Suche in Google Scholar
Bledowski, C., Prvulovic, D., Hoechstetter, K., Scherg, M., Wibral, M., Goebel, R., and Linden, D.E.J. (2004). Localizing P300 generators in visual target and distractor processing: a combined event-related potential and functional magnetic resonance imaging study. J. Neurosci. 24, 9353–9360.10.1523/JNEUROSCI.1897-04.2004Suche in Google Scholar PubMed PubMed Central
Bressler, S.L. and Richter, C.G. (2015). Interareal oscillatory synchronization in top-down neocortical processing. Curr. Opin. Neurobiol. 31 62–66.10.1016/j.conb.2014.08.010Suche in Google Scholar PubMed
Buzsáki, G. (2006). Rhythms of the Brain (New York: Oxford University Press).10.1093/acprof:oso/9780195301069.001.0001Suche in Google Scholar
Cabeza, R. and Nyberg, L. (2000). Imaging cognition II: an empirical review of 275 PET and fMRI studies. J. Cognitive Neurosci. 12, 1–47.10.1162/08989290051137585Suche in Google Scholar
Carretié, L. (2001). Psicofisiología (Madrid, Spain: Pirámide).Suche in Google Scholar
Case, R., Kurland, D.M., and Goldberg, J. (1982). Operational efficiency and the growth of short-term memory span. J. Exp. Child Psychol. 33, 386–404.10.1016/0022-0965(82)90054-6Suche in Google Scholar
Chelazzi, L., Miller, E.K., Duncan, J., and Desimone, R. (1993). A neural basis for visual search in inferior temporal cortex. Nature 363, 345–347.10.1038/363345a0Suche in Google Scholar PubMed
Chelazzi, L., Miller, E.K., Duncan, J., and Desimone, R. (2001). Responses of neurons in macaque area V4 during memory-guided visual search. Cereb. Cortex 11, 761–772.10.1093/cercor/11.8.761Suche in Google Scholar PubMed
Chelonis, J.J., Daniels-Shaw, J.L., Blake, D.J., and Paule, M.G. (2000). Developmental aspects of delayed matching-to-sample task performance in children. Neurotoxicol. Teratol. 22, 683–694.10.1016/S0892-0362(00)00090-8Suche in Google Scholar PubMed
Chiarenza, G.A., Papakostopoulos, D., Giordana, F., and Guareschi-Cazzullo, A. (1983). Movement-related brain macropotentials during skilled performances. A developmental study. Electroen. Clin. Neuro. 56, 373–383.10.1016/0013-4694(83)90263-8Suche in Google Scholar
Conklin, H.M., Luciana, M., Hooper, C.J., and Yarger, R.S. (2007). Working memory performance in typically developing children and adolescents: behavioral evidence of protracted frontal lobe development. Dev. Neuropsychol. 31, 103–128.10.1207/s15326942dn3101_6Suche in Google Scholar PubMed
Constantinidis, C. and Klingberg, T. (2016). The neuroscience of working memory capacity and training. Nat. Rev. Neurosci. 17, 438–449.10.1038/nrn.2016.43Suche in Google Scholar PubMed
Cordones, I., Gómez, C.M., and Escudero, M. (2013). Cortical dynamics during the preparation of antisaccadic and prosaccadic eye movements in humans in a gap paradigm. PLoS One 8, e63751.10.1371/journal.pone.0063751Suche in Google Scholar PubMed PubMed Central
Couperus, J.W. and Quirk, C. (2015). Visual search and the N2pc in children. Atten. Percept. Psycho. 77, 768–776.10.3758/s13414-015-0833-5Suche in Google Scholar
Courchesne, E. (1978). Neurophysiological correlates of cognitive development: changes in long latency event-related potentials from childhood to adulthood. Electroen. Clin. Neuro. 45, 468–482.10.1016/0013-4694(78)90291-2Suche in Google Scholar
Cowan, N. (1995). Attention and Memory: An Integrated Framework. (New York: Oxford University Press).Suche in Google Scholar
Cowan, N. (2010). Multiple concurrent thoughts: the meaning and developmental neuropsychology of working memory. Dev. Neuropsychol. 35, 447–474.10.1080/87565641.2010.494985Suche in Google Scholar PubMed PubMed Central
Crone, E.A., Wendelken, C., Donohue, S., Van Leijenhorst, L., and Bunge, S.A. (2006). Neurocognitive development of the ability to manipulate information in working memory. PNAS USA 103, 9315–9320.10.1073/pnas.0510088103Suche in Google Scholar PubMed PubMed Central
D‘Esposito, M. and Postle, B.R. (2015). The cognitive neuroscience of working memory. Annu. Rev. Psychol. 66, 115–142.10.1146/annurev-psych-010814-015031Suche in Google Scholar PubMed PubMed Central
De Avila, E. (1974). Children‘s transformations of visual information according to nonverbal syntactical rules. Unpublished doctoral dissertation, York University.Suche in Google Scholar
Diaz, S. (1974). Cucui scale: technical manual multilingual assessment program. Stockton Unified District, Stockton, CA.Suche in Google Scholar
Digiacomo, M.R., Marco-Pallarés, J., Flores, A.B., and Gómez, C.M. (2008). Wavelet analysis of the EEG during the neurocognitive evaluation of invalidly cued targets. Brain. Res. 1234, 94–103.10.1016/j.brainres.2008.07.072Suche in Google Scholar PubMed
Donchin, E. and Coles, M.G.H. (1988a). Is the P300 component a manifestation of context updating? Behav. Brain Sci. 11, 355–374.10.1017/S0140525X00058027Suche in Google Scholar
Donchin, E. and Coles, M.G.H. (1988b). On the conceptual foundations of cognitive psychophysiology: a reply to comments. Behav. Brain Sci. 11, 408–427.10.1017/S0140525X00058246Suche in Google Scholar
Durston, S., Davidson, M.C., Tottenham, N., Galvan, A., Spicer, J., Fossella, J.A., and Casey, B.J. (2006). A shift from diffuse to focal cortical activity with development. Developmental Sci. 9, 1–20.10.1111/j.1467-7687.2005.00454.xSuche in Google Scholar PubMed
Ecker, U.K., Lewandowsky, S., Oberauer, K., and Chee, A.E. (2010). The components of working memory updating: an experimental decomposition and individual differences. J. Exp. Psychol. Learn. 36, 170–189.10.1037/a0017891Suche in Google Scholar PubMed
Eimer, M. (1994). Sensory gating as a mechanism for visuospatial orienting: electrophysiological evidence from trial-by-trial cuing experiments. Percept. Psychophys. 55, 667–675.10.3758/BF03211681Suche in Google Scholar PubMed
Eriksson, J., Vogel, E.K., Lansner, A., Bergström, F., and Nyberg, L. (2015). Neurocognitive architecture of working memory. Neuron 88, 33–46. PMID 26447571.10.1016/j.neuron.2015.09.020Suche in Google Scholar PubMed
Evans, J.L., Selinger, C., and Pollak, S.D. (2011). P300 as a measure of processing capacity in auditory and visual domains in specific language impairment. Brain Res. 1389, 93–102.10.1016/j.brainres.2011.02.010Suche in Google Scholar PubMed
Finn, A.S., Sheridan, M.A., Kam, C.L.H., Hinshaw, S., and D‘Esposito M. (2010). Longitudinal evidence for functional specialization of the neural circuit supporting working memory in the human brain. J. Neurosci. 30, 11062–11067.10.1523/JNEUROSCI.6266-09.2010Suche in Google Scholar PubMed
Flores, A.B., Digiacomo, M.R., Meneres, S., Trigo, E., and Gómez, C.M. (2009). Development of preparatory activity indexed by the contingent negative variation in children. Brain Cognition 71, 129–140.10.1016/j.bandc.2009.04.011Suche in Google Scholar
Flores, A.B., Gómez, C.M., and Meneres, S. (2010). Evaluation of spatial validity-invalidity effects by the P300 component in children and young adults. Brain Res. Bull. 81, 525–533.10.1016/j.brainresbull.2010.01.005Suche in Google Scholar
Friedman, D., Cycowicz, Y.M., and Gaeta, H. (2001). The novelty P3: an event-related brain potential (ERP) sign of the brain‘s evaluation of novelty. Neurosci. Biobehav. R. 25, 355–373.10.1016/S0149-7634(01)00019-7Suche in Google Scholar
Fuchigami, T., Okubo, O., Ejiri, K., Fujita, Y., Kohira, R., Noguchi, Y., Fuchigami, S., Hiyoshi, K., Nishimura, A., and Haradag, K. (1995). Developmental changes in P300 wave elicited during two different experimental conditions. Pediatr. Neurol. 13, 25–28.10.1016/0887-8994(95)00086-USuche in Google Scholar PubMed
Fuster, J.M. (1997). Network Memory. Trends Neurosci. 20, 451–459.10.1016/S0166-2236(97)01128-4Suche in Google Scholar PubMed
Fuster, J.M. (1999). Cortical dynamics of memory. Int. J. PsychoPhysiol. 35, 155–164.10.1016/S0167-8760(99)00050-1Suche in Google Scholar
Fuster, J.M. (2007). Cortical memory. Scholarpedia, p. 11609.10.4249/scholarpedia.1644Suche in Google Scholar
Fuster, J.M. and Alexander, G.E. (1971). Neuron activity related to short-term memory. Science 173, 652–654.10.1126/science.173.3997.652Suche in Google Scholar PubMed
Fuster, J.M. and Bressler, S.L. (2014). Past makes future: role of pFC in prediction. J. Cognitive Neurosci. 27, 639–654.10.1162/jocn_a_00746Suche in Google Scholar
Fuster, J.M. and Jervey, J.P. (1981). Inferotemporal neurons distinguish and retain behaviorally relevant features of visual stimuli. Science 212, 952–955.10.1126/science.7233192Suche in Google Scholar PubMed
Fuster, J.M. and Jervey, J.P. (1982). Neuronal firing in the inferotemporal cortex of the monkey in a visual memory task. J. Neurosci. 2, 361–375.10.1523/JNEUROSCI.02-03-00361.1982Suche in Google Scholar
Gathercole, S.E. (1998). The development of memory. J. Child Psychol. Psyc. 39, 3–27.10.1017/S0021963097001753Suche in Google Scholar
Gathercole, S.E. and Pickering, S. (2000). Assessment of working memory in six and seven years old children. J. Educ. Psychol. 92, 377–390.10.1037/0022-0663.92.2.377Suche in Google Scholar
Gathercole, S.E., Pickering, S.J., Ambridge, B., and Wearing H. (2004). The structure of working memory from 4 to 15 years of age. Dev. Psychol. 40, 177–190.10.1037/0012-1649.40.2.177Suche in Google Scholar PubMed
Giedd, J.N., Lalonde, F.M., Celano, M.J., White, S.L., Wallace, G.L., Lee, N.R., and Lenroot, R.K. (2009). Anatomical brain magnetic resonance imaging of typically developing children and adolescents. J. Am. Acad. Child Adolesc. Psych. 48, 465–70.10.1097/CHI.0b013e31819f2715Suche in Google Scholar
Goldman-Rakic, P.S. (1971). Functional development of the prefrontal cortex in early life and the problem of neuronal plasticity. Exp. Neurol. 32, 366–387.10.1016/0014-4886(71)90005-7Suche in Google Scholar PubMed
Goldman-Rakic, P.S. (1995). Cellular basis of working memory. Neuron 14, 477–485.10.1016/0896-6273(95)90304-6Suche in Google Scholar PubMed
Gómez, C.M. and Flores, A. (2011). A neurophysiological evaluation of a cognitive cycle in humans. Neurosci. Biobehav. Rev. 35, 452–461.10.1016/j.neubiorev.2010.05.005Suche in Google Scholar PubMed
Gómez, C.M., Flores, A., Ledesma, A., Digiacomo, M.R., and González-Rosa, J. (2007). Fronto-parietal networks activation during the contingent negative period. Brain Res. Bull. 73, 40–47.10.1016/j.brainresbull.2007.01.015Suche in Google Scholar PubMed
Gómez, C.M., Flores, A., Ledesma, A., Digiacomo, M.R., and González-Rosa, J. (2008). P3a and P3b components associated to the neurocognitive evaluation of invalidly cued targets. Neurosci. Lett. 430, 181–185.10.1016/j.neulet.2007.10.049Suche in Google Scholar PubMed
Gómez, C.M., Rodríguez-Martínez, E.I., Fernández, A., Maestú, F, Poza, J., and Gómez, C. (2017). Absolute power spectral density changes in the magnetoencephalographic activity during the transition from childhood to adulthood. Brain Topogr. 30, 87–97.10.1007/s10548-016-0532-0Suche in Google Scholar PubMed
Harmony, T. (2013). The functional significance of delta oscillations in cognitive processing. Front. Integr. Neurosci. 7, 83.10.3389/fnint.2013.00083Suche in Google Scholar PubMed PubMed Central
Harmony, T., Marosi, E., Becker, J., Reyes, A., Rodríguez, M., Bernal, J., Hinojosa, G., and Fernández, T. (1992). Correlación entre el análisis de frecuencias del EEG y el rendimiento en pruebas de atención selectiva y memoria en niños. Revista latina de Pensamiento y Lenguaje 1, 96–103.Suche in Google Scholar
Hillyard, S. and Picton, T.W. (1987). Electrophysiology of Cognition. Handbook of Physiology Section 1: The Nervous System. Vol. 5, Higher Functions of the Brain. F. Plum, ed. (Bethesda, MD: American Physiological Society), pp. 519–584.10.1002/cphy.cp010513Suche in Google Scholar
Hillyard, S.A. and Anllo-Vento, L. (1998). Event-related brain potentials in the study of visual selective attention. Proc. Natl. Acad. Sci. USA 95, 781–787.10.1073/pnas.95.3.781Suche in Google Scholar PubMed PubMed Central
Hitch, G.J., Woodin, M.E., and Baker, S. (1989). Visual and phonological components of working memory in children. Mem. Cognit. 17, 175–185.10.3758/BF03197067Suche in Google Scholar PubMed
Hoekema, R., Wieneke, G.H., Leijten, F.S.S., and Van Veelen, C.W.M. (2003). Measurement of the conductivity of skull, temporarily removed during epilepsy surgery. Brain Topogr. 16, 29–38.10.1023/A:1025606415858Suche in Google Scholar PubMed
Hopf, J., Luck, S.J., Girelli, M., Hagner, T., Mangun, G.R., Scheich, H., and Heinze, H.J. (2000). Neural sources of focused attention in visual search. Cereb. Cortex 10, 1233–1241.10.1093/cercor/10.12.1233Suche in Google Scholar
Huttenlocher, P.R. (1990). Morphometric study of human cerebral cortex development. Neuropsychologia 28, 517–527.10.1016/0028-3932(90)90031-ISuche in Google Scholar PubMed
Hyun, J., Woodman, G.F., Vogel, E.K., Hollingworth, A., and Luck, S.J. (2009). The comparison of visual working memory representations with perceptual inputs.J. Exp. Psychol. Hum. Percept Perform 35, 1140–1160.10.1037/a0015019Suche in Google Scholar PubMed PubMed Central
Jarvis, H.L. and Gathercole, S.E. (2003). Verbal and non-verbal working memory and achievements on national curriculum tests at 11 and 14 years of age. Educ. Child Psychol. 20, 123–140.10.53841/bpsecp.2003.20.3.123Suche in Google Scholar
Johnson, R. and Donchin, E. (1982). Sequential expectancies and decision-making in a changing environment: an electrophysiological approach. Psychophysiology 19, 183–200.10.1111/j.1469-8986.1982.tb02545.xSuche in Google Scholar PubMed
Johnson, J., Fabian, V., and Pascual-Leone, J. (1989). Quantitative hardware stages that constrain language development. Hum. Dev. 32, 245–271.10.1159/000276477Suche in Google Scholar
Jonkman, L.M., Lansbergen, M., and Stauder, J.E.A. (2003). Developmental differences in behavioral and event-related brain responses associated with response preparation and inhibition in a go/nogo task. Psychophysiology 40, 752–761.10.1111/1469-8986.00075Suche in Google Scholar PubMed
Kemps, E., Rammelaere, S.D., and Desmet, T. (2000). The development of working memory: exploring the complementary of two models. J. Exp. Child Psychol. 77, 89–109.10.1006/jecp.2000.2589Suche in Google Scholar PubMed
Klingberg, T. (2006). Developmental of a superior frontal-intraparietal network for visuo-spatial working memory. Neuropsychologia 44, 2171–2177.10.1016/j.neuropsychologia.2005.11.019Suche in Google Scholar PubMed
Klingberg, T. (2016). Neural basis of cognitive training and development. Curr. Op. Behav. Sci. 10, 97–101.10.1016/j.cobeha.2016.05.003Suche in Google Scholar
Klingberg, T., Forssberg, H., and Westerberg, H. (2002). Increased brain activity in frontal and parietal cortex underlies the development of visuospatial working memory capacity during childhood. J. Cognitive Neurosci. 14, 1–10.10.1162/089892902317205276Suche in Google Scholar PubMed
Kolev, V. and Yordanova, J. (1997). Analysis of phase-locking is informative for studying event-related EEG activity. Biol. Cybern. 76, 229–235.10.1007/s004220050335Suche in Google Scholar PubMed
Kolev, V., Yordanova, J., and Silyamova, V. (1994). The relation between the endogenous P3 wave and evoked frequency components in children. J. Psychophysiol. 3, 277.Suche in Google Scholar
Krause, C.M., Boman, P.A., Sillanmäki, L., Varho, T., and Holopainen, I.E. (2008). Brain oscillatory EEG event-related desynchronization (ERD) and synchronization (ERS) responses during an auditory memory task are altered in children with epilepsy. Seizure 17, 1–10.10.1016/j.seizure.2007.05.015Suche in Google Scholar PubMed
Kwon, H., Reiss, A.L., and Menon, V. (2002). Neural basis of protracted developmental changes in visuo-spatial working memory. Proc. Natl. Acad. Sci. USA 99, 13336–13341.10.1073/pnas.162486399Suche in Google Scholar
Leavitt, M.L., Diego Mendoza-Halliday, D., and Martinez-Trujillo, J.C. (2017). Sustained activity encoding working memories: not fully distributed. Trends Neurosci. 40, 328–346.10.1016/j.tins.2017.04.004Suche in Google Scholar PubMed
Lee, S.H. and Baker, C.I. (2016). Multi-voxel decoding and the topography of maintained information during visual working memory. Front. Systems Neurosci. 10, 2.10.3389/fnsys.2016.00002Suche in Google Scholar
Linares, R., Bajo, M.T., and Pelegrina, S. (2016). Age-related differences in working memory updating components. J. Exp. Child Psychol. 147, 39–52.10.1016/j.jecp.2016.02.009Suche in Google Scholar PubMed
Logie, R.H. (1995). Visuo-Spatial Working Memory (Hove: Lawrence Erlbaum Associates), p. 176.Suche in Google Scholar
Logie, R.H., Zucco, G.M., and Baddeley, A.D. (1990). Interference with visual short-term memory. Acta Psychol. 75, 55–74.10.1016/0001-6918(90)90066-OSuche in Google Scholar
Lovstad, M., Funderud, I., Lindgren, M., Endestad, T., Due-Tønnessen, P., Meling, T., Voytek, B., Knight, R.T., and Solbakk, A.K. (2012). Contribution of subregions of human frontal cortex to novelty processing. J. Cognit. Neurosci. 24, 378–395.10.1162/jocn_a_00099Suche in Google Scholar PubMed PubMed Central
Löw, A., Rockstroh, B., Cohen, R., Hauk, O., Berg, P., and Maier, W. (1999). Determining working memory from ERP topography. Brain Topogr. 12, 39–47.10.1023/A:1022229623355Suche in Google Scholar PubMed
Luciana, M., Conklin, H.M., Hooper, C.J., Yarger, R.S. (2005). The development of nonverbal working memory and executive control processes in adolescents. Child Dev. 76, 697–712.10.1111/j.1467-8624.2005.00872.xSuche in Google Scholar PubMed
Luck, S.J. and Hillyard, S.A. (1994). Spatial filtering during visual search: evidence from human electrophysiology. J. Exp. Psychol. Hum. 20, 1000–1014.10.1037/0096-1523.20.5.1000Suche in Google Scholar
Luck, S.J. and Vogel, E.K. (2013). Visual working memory capacity: from psychophysics and neurobiology to individual differences. Trends Cogn. Sci. 17, 391–400.10.1016/j.tics.2013.06.006Suche in Google Scholar PubMed
Luck, S.J., Woodman, G.F., and Vogel, E.K. (2000). Event-related potential studies of attention. Trends Cogn. Sci. 4, 432–440.10.1016/S1364-6613(00)01545-XSuche in Google Scholar PubMed
Luria, R., Balaban, H., Awh, E., and Vogel E.K. (2016). The contralateral delay activity as a neural measure of visual working memory. Neurosci Biobehav Rev. 62, 100–108.10.1016/j.neubiorev.2016.01.003Suche in Google Scholar PubMed
Määttä, S., Saavalainen, P., Könönen, M., Pääkkönen, A., Muraja-Murro, A., and Partanen, J. (2005). Processing of highly novel auditory events in children and adults: an event-related potential study. Neuroreport 16, 1443–1446.10.1097/01.wnr.0000177014.36979.3fSuche in Google Scholar PubMed
Mangun, G.R. and Hillyard, S.A. (1991). Modulations of sensory-evoked brain potentials indicate changes in perceptual processing during visual-spatial priming. J. Exp. Psychol. Hum. 17, 1057–1074.10.1037/0096-1523.17.4.1057Suche in Google Scholar
McCollough, A.W., Machizawa, M.G., and Vogel, E.K. (2007). Electrophysiological measures of maintaining representations in visual working memory. Cortex 43, 77–94.10.1016/S0010-9452(08)70447-7Suche in Google Scholar PubMed
McElree, B. (2006). Accessing recent events. Psychol. Learn. Motiv. 46:155–200.10.1016/S0079-7421(06)46005-9Suche in Google Scholar
Mecklinger, A. and Pfeifer, E. (1996). Event-related potentials reveal topographical and temporal distinct neuronal activation patterns for spatial and object working memory. Cognitive Brain Res. 4, 211–224.10.1016/S0926-6410(96)00034-1Suche in Google Scholar
Miles, C., Morgan, M.J., Milne, A.B., and Morris, E.D.M. (1996). Developmental and individual differences in visual memory span. Curr. Psychol. 15, 53–67.10.1007/BF02686934Suche in Google Scholar
Myers, N.E., Stokes, M.G., and Nobre, A.C. (2017). Prioritizing information during working memory: beyond sustained internal attention. Trends Cogn. Sci. 21, 449–461.10.1016/j.tics.2017.03.010Suche in Google Scholar PubMed
Oades, R.D., Ditteann, B.A., and Zerbin, D. (1997). Development and topography of auditory event-related potentials (ERP): mismatch and processing negativity in individuals 8-22 years of age. Psychophysiology 34, 677–693.10.1111/j.1469-8986.1997.tb02143.xSuche in Google Scholar PubMed
Oberauer, K. (2013). The focus of attention in working memory – from metaphors to mechanisms. Front. Hum. Neurosci. 7, 673.10.3389/fnhum.2013.00673Suche in Google Scholar PubMed
Ostby, Y., Tamnes, C.K., Fjell, A.M., and Walhovd, K.B. (2011). Morphometry and connectivity of the fronto-parietal verbal working memory network in development. Neuropsychologia 49, 3854–3862.10.1016/j.neuropsychologia.2011.10.001Suche in Google Scholar PubMed
Pascual-Leone, J. and Baillargeon, R. (1994). Developmental measurement of mental attention. Int. J. Behav. Dev. 17, 161–200.10.1177/016502549401700110Suche in Google Scholar
Pascual-Marqui R.D. (2002). Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol. 24, 5–12.Suche in Google Scholar PubMed
Patterson, J.V., Pratt, H., and Starr, A. (1991). Event-related potential correlates of the serial position effect in short-term memory. Electroen. Clin. Neurophysiol. 78, 424–437.10.1016/0013-4694(91)90060-HSuche in Google Scholar
Paule, M.G., Bushnell, P.J., Maurissen, J.P.J., Wenger, G.R., Buccafusco, J.J., Chelonis, J.J., and Elliott, R. (1998). The use of delayed matching-to-sample procedures in studies of short-term memory in animals and humans. Neurotoxicol. Teratol. 20, 493–502.10.1016/S0892-0362(98)00013-0Suche in Google Scholar PubMed
Paus, T., Keshavan, M., and Giedd, J.N. (2008). Why do many psychiatric disorders emerge during adolescence? Nat. Rev. Neurosci. 9, 947–57.10.1038/nrn2513Suche in Google Scholar PubMed PubMed Central
Pelegrina, S., Lechuga, M.T., García-Madruga, J.A., Elosúa, M.R., Macizo, P., Carreiras, M., Fuentes, L.J., and Bajo, M.T. (2015). Normative data on the n-back task for children and young adolescents. Front. Psychol. 6, 1544.10.3389/fpsyg.2015.01544Suche in Google Scholar PubMed PubMed Central
Perlman, S.B., Huppert, T.J., and Luna, B. (2016). Functional near-infrared spectroscopy evidence for development of prefrontal engagement in working memory in early through middle childhood. Cereb. Cortex 26, 2790–2799.10.1093/cercor/bhv139Suche in Google Scholar PubMed PubMed Central
Pickering, S.J. (2001). Cognitive approaches to the fractionation of visuo-spatial working memory. Cortex 37, 457–473.10.1016/S0010-9452(08)70587-2Suche in Google Scholar PubMed
Pickering, S.J. and Gathercole, S.E. (2001). Working Memory Test Battery for Children (WMTB-C) (London: Pearson).Suche in Google Scholar
Pickering, S.J., Gathercole, S.E., and Peaker, S.M. (1998). Verbal and visuo-spatial short-term memory in children: evidence for common and distinct mechanisms. Mem. Cognit. 26, 1117–1130.10.3758/BF03201189Suche in Google Scholar
Polich, J. (2007). Updating P300: an integrative theory of P3a and P3b. Clin. Neurophysiol. 118, 2128–2148.10.1016/j.clinph.2007.04.019Suche in Google Scholar PubMed
Raghavachari, S., Kahana, M.J., Rizzuto, D.S., Caplan, J.B., Kirschen, M.P., Bourgeois, B., Madsen, J.R., and Lisman, J.E. (2001). Gating of human theta oscillations by a working memory task. J. Neurosci. 21, 3175–3183.10.1523/JNEUROSCI.21-09-03175.2001Suche in Google Scholar PubMed
Reynolds, G.D. and Romano, A.C. (2016). The development of attention systems and working memory in infancy. Front. Syst. Neurosci. 10, 15.10.3389/fnsys.2016.00015Suche in Google Scholar PubMed
Rodríguez-Martínez, E.I., Barriga-Paulino, C.I., Rojas-Benjumea, M.A., and Gómez, C.M. (2013). Spontaneous theta rhythm and working memory co-variation during child development. Neurosci. Lett. 550, 134–138.10.1016/j.neulet.2013.06.054Suche in Google Scholar PubMed
Rodríguez-Martínez, E.I., Barriga-Paulino, C.I., Rojas-Benjumea, M.A., and Gómez, C.M. (2014). Co-maturation of theta and low-beta rhythms during child development. Brain Topogr. 28, 250–260.10.1007/s10548-014-0369-3Suche in Google Scholar PubMed
Rojas-Benjumea, M.A., Barriga-Paulino, C.I., Rodriguez-Martinez, E.I., and Gomez, C.M. (2015). Development of behavioral parameters and ERPs in a novel-target visual detection paradigm in children, adolescents and young adults. Behav. Brain Funct. 11, 22.10.1186/s12993-015-0067-7Suche in Google Scholar
Ross-Sheehy, S., Oakes, L.M., and Luck, S.J. (2010). Exogenous attention influences visual short-term memory in infants. Dev. Sci. 14, 490–501.10.1111/j.1467-7687.2010.00992.xSuche in Google Scholar PubMed
Ruchkin, D.S., Johnson Jr. R., Canoune, H., and Ritter, W. (1990). Short-term memory storage and retention: an event-related brain potential study. Electroen. Clin. Neurophysiol. 76, 419–439.10.1016/0013-4694(90)90096-3Suche in Google Scholar
Ruchkin, D.S., Johnson Jr. R., Grafman, J., Canoune, H., and Ritter, W. (1992). Distinctions and similarities among working memory processes: an event-related potential study. Cognitive Brain Res. 1, 53–66.10.1016/0926-6410(92)90005-CSuche in Google Scholar
Ruchkin, D.S., Johnson Jr. R., Grafman, J., Canoune, H., and Ritter, W. (1997). Multiple visuospatial working memory buffers: evidence from spatiotemporal patterns of brain activity. Neuropsychologia 35, 195–209.10.1016/S0028-3932(96)00068-1Suche in Google Scholar PubMed
Rugg, M.D. (1984a). Event-related potentials and the phonological processing of words and non-words. Neuropsychologia 22, 435–443.10.1016/0028-3932(84)90038-1Suche in Google Scholar
Rugg, M.D. (1984b). Event-related potentials in phonological matching tasks. Brain Lang. 23, 225–240.10.1016/0093-934X(84)90065-8Suche in Google Scholar
Salazar, R.F., Dotson, N.M., Bressler, S.L., and Gray, C.M. (2012). Content specific fronto-parietal synchronization during visual working memory. Science 338, 1097–1100.10.1126/science.1224000Suche in Google Scholar PubMed PubMed Central
Sander, M.C., Werkle-Bergner, M., and Lindenberger, U. (2011). Contralateral delay activity reveals life-span age differences in top-down modulation of working memory contents. Cereb. Cortex 21, 2809–2819.10.1093/cercor/bhr076Suche in Google Scholar PubMed
Sauseng, P., Klimesch, W., Heise, K., Gruber, W., Holz, E.M., Karim, A.A., Glennon, M., Gerloff, C., Birbaumer, N., and Hummel, F.C. (2009). Brain oscillatory substrates of human visual short-term memory capacity. Curr. Biol. 19, 1846–1852.10.1016/j.cub.2009.08.062Suche in Google Scholar PubMed
Sauseng, P., Griesmayr, B., Freunberger, R., and Klimesch, W. (2010). Control mechanisms in working memory: a possible function of EEG theta oscillations. Neurosci. Biobehav. Rev. 34, 1015–1022.10.1016/j.neubiorev.2009.12.006Suche in Google Scholar PubMed
Schweinsburg, A.D., Nagel, B.J., and Tapert, S.F. (2005). fMRI reveals alternation of spatial working memory networks across adolescence. J. Int. Neuropsych. Soc. 11, 631–644.10.1017/S1355617705050757Suche in Google Scholar PubMed PubMed Central
Segalowitz, S.J., Santesso, D.L., and Jetha, M.K. (2010). Electrophysiological changes during adolescence: a review. Brain Cognit. 72, 86–100.10.1016/j.bandc.2009.10.003Suche in Google Scholar PubMed
Simmering, V.R. and Perone, S. (2013). Working memory capacity as a dynamic process. Front. Psychol. 3, 567.10.3389/fpsyg.2012.00567Suche in Google Scholar PubMed
Shimi, A., Kuo, B.C., Astle, D.E., Nobre, A.C., and Scerif, G. (2014). Age group and individual differences in attentional orienting dissociate neural mechanisms of encoding and maintenance in visual STM. J. Cognitive Neurosci. 26, 864–877.10.1162/jocn_a_00526Suche in Google Scholar
Shimi, A., Nobre, A.C., and Scerif, G. (2015). ERP markers of target selection discriminate children with high vs. low working memory capacity. Front. Systems Neurosci. 9, 153.Suche in Google Scholar
Spronk, M., Vogel, E.K., and Jonkman, L.M. (2013). No behavioral or ERP evidence for a developmental lag in visual working memory capacity or filtering in adolescents and adults with ADHD. PLoS One 8, e62673.10.1371/journal.pone.0062673Suche in Google Scholar PubMed
Squires, K.C., Wickens, C., Squires, N.K., and Donchin, E. (1976). Effect of stimulus sequence on waveform of cortical event-related potential. Science 193, 1142–1146.10.1126/science.959831Suche in Google Scholar PubMed
Stewart, L. and Pascual-Leone, J. (1992). Mental capacity constraints and the development of moral reasoning. J. Exp. Child Psychol. 54, 251–287.10.1016/0022-0965(92)90020-7Suche in Google Scholar
Stige, S., Fjell, A.M., Smith, L., Lindgren, M., and Walhovd, K.B. (2007). The development of visual P3a and P3b. Dev. Neuropsychol. 32, 563–584.10.1080/87565640701361096Suche in Google Scholar PubMed
Tamnes, C.K., Walhovd, K.B., Grydeland, H., Holland, D., Østby, Y., Dale, A.M., and Fjell, A.M. (2013). Longitudinal working memory development is related to structural maturation of frontal and parietal cortices. J. Cognitive Neurosci. 25, 1611–1623.10.1162/jocn_a_00434Suche in Google Scholar
Tesche, C.D. and Karhu, J. (2000). Theta oscillations index human hippocampal activation during a working memory task. Proc. Natl. Acad. Sci. USA 97, 919–924.10.1073/pnas.97.2.919Suche in Google Scholar
Thomas, K.M. and Nelson, C.A. (1996). Age-related changes in the electrophysiological response to visual stimulus novelty: a topographical approach. Electroen. Clin. Neurophysiol. 98, 294–308.10.1016/0013-4694(95)00280-4Suche in Google Scholar
Thomas, K.M., King, S.W., Franzen, P.L., Welsh, T.F., Berkowitz, A.L., Noll, D.C., Birmaher, V., and Casey, B.J. (1999). A developmental functional MRI study of spatial working memory. NeuroImage 10, 327–338.10.1006/nimg.1999.0466Suche in Google Scholar PubMed
Todor, J.I. (1979). Developmental differences in motor task performance integration: a test of Pascual-Leone’s theory of constructive operators. J. Exp. Child Psychol. 28, 314–322.10.1016/0022-0965(79)90092-4Suche in Google Scholar
Tsujimoto, S., Yamamoto, T., Kawaguchi, H., Koizumi, H., and Sawaguchi, T. (2004). Prefrontal cortical activation associated with working memory in adults and preschool children: an event-related optical topography study. Cereb. Cortex 14, 703–712.10.1093/cercor/bhh030Suche in Google Scholar PubMed
Van der Stelt, O., Kok, A., Smulders, F.T.Y., Snel, J., and Gunning, W.B. (1998). Cerebral event-related potentials associated with selective attention to color: developmental changes from childhood to adulthood. Psychophysiology 35, 227–239.10.1111/1469-8986.3530227Suche in Google Scholar PubMed
Verleger, R., Jaśkowski, P., and Wascher, E. (2005). Evidence of an integrative role of P3b in linking reaction to perception. J. Psychophysiol. 19, 150.10.1027/0269-8803.19.3.165Suche in Google Scholar
Vestergaard, M., Madsen, K.S., Baaré, W.F., Skimminge, A., Ejersbo, L.R., Ramsøy, T.Z., Gerlach, C., Akeson, P., Paulson, O.B., and Jernigan, T.L. (2011). White matter microstructure in superior longitudinal fasciculus associated with spatial working memory performance in children. J. Cognitive. Neurosci. 23, 2135–2146.10.1162/jocn.2010.21592Suche in Google Scholar
Wild-Wall, N., Falkenstein, M., and Gajewski, P.D. (2011). Age-related differences in working memory performance in a 2-back task. Front. Psychol. 2, 186.10.3389/fpsyg.2011.00186Suche in Google Scholar
Watter, S., Geffen, G.M., and Geffen, L.B. (2001). The n-back as a dual-task: P300 morphology under divided attention. Psychophysiology 38, 998–1003.10.1111/1469-8986.3860998Suche in Google Scholar PubMed
Wijers, A.A., Lamain, W., Slopsema, J.S., Mulder, G., and Mulder, L.J.M. (1989). An electrophysiological investigation of the spatial distribution of attention to colored stimuli in focused and divided attention conditions. Biol. Psychol. 29, 213–245.10.1016/0301-0511(89)90021-5Suche in Google Scholar PubMed
Wilson, J.T.L., Scott, J.H., and Power, K.G. (1987). Developmental differences in the span of visual memory for pattern. Brit. J. Dev. Psychol. 5, 249–255.10.1111/j.2044-835X.1987.tb01060.xSuche in Google Scholar
Woodman, G.F. and Vogel, E.K. (2008). Selective storage and maintenance of an object’s features in visual working memory. Psychon. Bull. Rev. 15, 223–229.10.3758/PBR.15.1.223Suche in Google Scholar PubMed
Yordanova, J. and Kolev, V. (1998). Developmental changes in the theta response system: a single sweep analysis. J. Psychophysiol. 12, 113–126.Suche in Google Scholar
Yordanova, J., Devrim, M., Kolev, V., Ademoglu, A., and Demiralp, T. (2000). Multiple time-frequency components account for the complex functional reactivity of P300. Neuroreport 11, 1097–1103.10.1097/00001756-200004070-00038Suche in Google Scholar PubMed
Zhou, X., Zhu, D., Katsuki, F., Qi, X.L., Lees, C.J., Bennett, A.J., Salinas, E., Stanford, T.R., and Constantinidis, C. (2014). Age-dependent changes in prefrontal intrinsic connectivity. Proc. Natl. Acad. Sci. USA 111, 3853–3858.10.1073/pnas.1316594111Suche in Google Scholar PubMed PubMed Central
©2018 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Accelerated aging and aging process in the brain
- Recent studies on cellular and molecular mechanisms in Alzheimer’s disease: focus on epigenetic factors and histone deacetylase
- The neurophysiology of working memory development: from childhood to adolescence and young adulthood
- Mothering under the influence: how perinatal drugs of abuse alter the mother-infant interaction
- The natural history of subependymal giant cell astrocytomas in tuberous sclerosis complex: a review
- Why do herpes simplex encephalitis and semantic dementia show a different pattern of semantic impairment in spite of their main common involvement within the anterior temporal lobes?
- Regenerative potential of secretome from dental stem cells: a systematic review of preclinical studies
- Understanding the controversial drug targets in epilepsy and pharmacoresistant epilepsy
- Population-based differences in immune system response contribute to an increased risk of schizophrenia in African migrants?
Artikel in diesem Heft
- Frontmatter
- Accelerated aging and aging process in the brain
- Recent studies on cellular and molecular mechanisms in Alzheimer’s disease: focus on epigenetic factors and histone deacetylase
- The neurophysiology of working memory development: from childhood to adolescence and young adulthood
- Mothering under the influence: how perinatal drugs of abuse alter the mother-infant interaction
- The natural history of subependymal giant cell astrocytomas in tuberous sclerosis complex: a review
- Why do herpes simplex encephalitis and semantic dementia show a different pattern of semantic impairment in spite of their main common involvement within the anterior temporal lobes?
- Regenerative potential of secretome from dental stem cells: a systematic review of preclinical studies
- Understanding the controversial drug targets in epilepsy and pharmacoresistant epilepsy
- Population-based differences in immune system response contribute to an increased risk of schizophrenia in African migrants?