Home Physical Sciences Impact of gamma and electron-beam irradiations on the thermal dehydration process of europium acetate hydrate
Article
Licensed
Unlicensed Requires Authentication

Impact of gamma and electron-beam irradiations on the thermal dehydration process of europium acetate hydrate

  • Noura Mossaed Saleh EMAIL logo , Hisham Fouad Aly , Fatma El-Zahraa A. Abd El-Aziz and Refaat Mohamed Mahfouz
Published/Copyright: May 23, 2025

Abstract

The main goal of this work is to study the effect of irradiation on the thermal behavior of europium acetate hydrate. Exposure to gamma and electron beam irradiation significantly altered the kinetic triplets (E a , lnA, f(α)) and thermodynamic parameters. Integral and differential linear isoconversional methods were applied to determine activation energy, E a , and pre-exponential component, A, of the dehydration process. The Vyazovkin non-linear isoconversional method was used in parallel to the linear method for comparison. In the gamma and electron-beam-irradiated material, the dehydration proceeded by one thermal step. A synergistic combination of both nucleation sites and electron beam enhances the dehydration process, as indicated by a decrease in the values of E a by increasing the degree of conversion, which results in a lower value of E a (113.681 kJ/mol) compared to gamma-irradiated material, which shows retardation of the decomposition and rising value of E a (120.601 kJ/mol) of the dehydration. The Ozawa’s generalized time and Málek equations were employed to determine the mechanism models (R2) and (F1) for gamma and electron-beam-irradiated materials, respectively. The kinetic and thermodynamic parameters were compared with those for un-irradiated material.


Corresponding author: Noura Mossaed Saleh, Chemistry Department, Faculty of Science, Assiut University, 71516, Assiut, Egypt, E-mail:

Acknowledgments

This work is part of Noura Saleh’s Ph.D. thesis. The authors thank Assiut University for the official technical and financial support. The authors also would like to thank the crew team of radiation units at the Egyptian Atomic Energy Authority for facilitating the irradiation experiments.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: The researchers extend appreciation to the Postgraduate Studies & Research Sector, Assiut University for funding this work as a research number: AUN2025F.Sci.H0004.

  7. Data availability: Not applicable.

References

1. Janković, B.; Dodevski, V.; Veljković, F.; Janković, M.; Manić, N. Application of Model-Free and Model-Based Kinetic Methods in Evaluation of Reactions Complexity During Thermo-Oxidative Degradation Process: Case Study of [4-(Hydroxymethyl)Phenoxymethyl] Polystyrene Resin. Fire 2024, 7 (5), 165. https://doi.org/10.3390/fire7050165.Search in Google Scholar

2. Zhao, J.; Chen, Z.; Bian, H. A Combined Kinetic Analysis for Thermal Characteristics and Reaction Mechanism Based on Non-Isothermal Experiments: The Case of Poly (Vinyl Alcohol) Pyrolysis. Therm. Sci. Eng. Prog. 2023, 39, 101692. https://doi.org/10.1016/j.tsep.2023.101692.Search in Google Scholar

3. Barnes, P. Comprehensive Chemical Kinetics. In Reactions in the Solid State; Bamford, C. H., Tipper, C. F. H., Eds.; Elsevier: Amsterdam, Vol. 22, 1980; p. 340.Search in Google Scholar

4. Khan, H.; Savvopoulos, S.; Janajreh, I. Artificial Neural Network-Assisted Thermogravimetric Analysis of Thermal Degradation in Combustion Reactions: A Study across Diverse Organic Samples. Environ. Res. 2024, 249, 118463. https://doi.org/10.1016/j.envres.2024.118463.Search in Google Scholar PubMed

5. Fischer, O.; Lemaire, R.; Bensakhria, A. Thermogravimetric Analysis and Kinetic Modeling of the Pyrolysis of Different Biomass Types by Means of Model-Fitting, Model-Free and Network Modeling Approaches. J. Therm. Anal. Calorim. 2024, 149 (19), 10941–10963. https://doi.org/10.1007/s10973-023-12868-w.Search in Google Scholar PubMed PubMed Central

6. Călin, C.; Sîrbu, E.-E.; Tănase, M.; Győrgy, R.; Popovici, D. R.; Banu, I. A Thermogravimetric Analysis of Biomass Conversion to Biochar: Experimental and Kinetic Modeling. Appl. Sci. 2024, 14 (21), 9856. https://doi.org/10.3390/app14219856.Search in Google Scholar

7. Zsako, J. Kinetic Analysis of Thermogravimetric Data, VI: Some Problems of Deriving Kinetic Parameters from TG Curves. J. Therm. Anal. 1973, 5, 239–251. https://doi.org/10.1007/bf01950372.Search in Google Scholar

8. Zuru, A. A.; Whitehead, R.; Griffiths, D. L. A New Technique for Determination of the Possible Reaction Mechanism from Non-Isothermal Thermogravimetric Data. Thermochim. Acta 1990, 164, 285–305. https://doi.org/10.1016/0040-6031(90)80445-5.Search in Google Scholar

9. Kanungo, S. Kinetics of Thermal Dehydration and Decomposition of Hydrated Chlorides of Some 3d Transition Metals (Mn-Cu Series). Part-I. Dehydration of MnCl2⋅4H2O. J. Indian Chem. Soc. 2004, 81, 644–653.10.1002/chin.200541015Search in Google Scholar

10. Mahfouz, R.; Monshi, M.; Alshehri, S.; Abd El-Salam, N. Isothermal Decomposition of γ-Irradiated Samarium Acetate. Radiat. Phys. Chem. 2000, 59 (4), 381–385. https://doi.org/10.1016/s0969-806x(00)00302-9.Search in Google Scholar

11. Mahfouz, R.; Monshi, M.; Abd El-Salam, N. Kinetics of the Thermal Decomposition of γ-Irradiated Gadolinium Acetate. Thermochim. Acta 2002, 383 (1–2), 95–101. https://doi.org/10.1016/s0040-6031(01)00682-7.Search in Google Scholar

12. Mahfouz, R.; Ahmed, G.-W.; Alshammari, M. Application of the Model-Free Approach to the Study of Non-Isothermal Decomposition of Un-Irradiated and γ-Irradiated Hydrated Gadolinium Acetylacetonate. Radiat. Eff. Defects Solids 2014, 169 (6), 490–498. https://doi.org/10.1080/10420150.2013.877909.Search in Google Scholar

13. Mahfouz, R.; Al-Shehri, S.; Monshi, M.; Abd El-Salam, N. Isothermal Decomposition of γ-Irradiated Dysprosium Acetate. Radiat. Eff. Defects Solids 2002, 157 (5), 515–519. https://doi.org/10.1080/10420150214607.Search in Google Scholar

14. Mahfouz, R.; Al-Shehri, S.; Monshi, M.; Alhaizan, A.; Abd El-Salam, N. Isothermal Decomposition of γ-Irradiated Erbium Acetate. Radiat. Eff. Defects Solids 2007, 162 (2), 95–100. https://doi.org/10.1080/10420150601054491.Search in Google Scholar

15. Rashwan, N. F.; Wahid, H.; Dahy, A. A.; Mahfouz, R. M. Thermal Decomposition of Un-Irradiated and γ-ray Irradiated Holmium Acetate Tetrahydrate. Part 1: Kinetics of Nonisothermal Dehydration of Un-Irradiated and γ-ray Irradiated Ho(CH3COO)3⋅4H2O. Radiochim. Acta 2018, 106 (9), 775–785. https://doi.org/10.1515/ract-2017-2892.Search in Google Scholar

16. Saleh, N. M.; Mahmoud, G. A.; Dahy, A. A.; Soliman, S. A.-F.; Mahfouz, R. M. Kinetics of Nonisothermal Dehydration of Unirradiated and γ-ray Irradiated Neodymium (III) Acetate Hydrate. Radiochim. Acta 2019, 107 (2), 165–178. https://doi.org/10.1515/ract-2018-2998.Search in Google Scholar

17. Saleh, N. M.; Aly, H. F.; Ahmed, E. A. M.; Mahfouz, R. M. Dehydration of Un-Irradiated and Gamma and Electron-Beam Irradiated Europium Acetate Hydrate Under Non-Isothermal Conditions: Kinetics of the Dehydration Process of Un-Irradiated Material. Radiochim. Acta 2025, 113 (3), 229–243. https://doi.org/10.1515/ract-2024-0317.Search in Google Scholar

18. Dienes, G.; Vineyard, G. Radiation Effects in Solids; Interscience Publ. Inc: New York, 1957.Search in Google Scholar

19. Fathy, D.; Kamar, E.; Hanafy, M.; Mousa, M. Kinetic Studies on the Catalyzed and Un-Catalyzed Pyrolysis of Mixed HDPE and PP (75: 25 wt%) Plastic Waste Using a Combination of Model-Fitting and Model-Free Methods. J. Basic Environ. Sci. 2024, 11 (4), 417–436. https://doi.org/10.21608/jbes.2024.391263.Search in Google Scholar

20. Málek, J.; Koga, N.; Pérez-Maqueda, L. A.; Criado, J. M. The Ozawa’s Generalized Time Concept and YZ-Master Plots as a Convenient Tool for Kinetic Analysis of Complex Processes. J. Therm. Anal. Calorim. 2013, 113, 1437–1446. https://doi.org/10.1007/s10973-013-2939-0.Search in Google Scholar

21. Sánchez-Jiménez, P. E.; Pérez-Maqueda, L. A.; Perejón, A.; Criado, J. M. Generalized Kinetic Master Plots for the Thermal Degradation of Polymers Following a Random Scission Mechanism. J. Phys. Chem. A 2010, 114 (30), 7868–7876. https://doi.org/10.1021/jp103171h.Search in Google Scholar PubMed

22. Gotor, F. J.; Criado, J. M.; Malek, J.; Koga, N. Kinetic Analysis of Solid-State Reactions: The Universality of Master Plots for Analyzing Isothermal and Nonisothermal Experiments. J. Phys. Chem. A 2000, 104 (46), 10777–10782. https://doi.org/10.1021/jp0022205.Search in Google Scholar

23. Ozawa, T. Non-Isothermal Kinetics and Generalized Time. Thermochim. Acta 1986, 100 (1), 109–118. https://doi.org/10.1016/0040-6031(86)87053-8.Search in Google Scholar

24. Ozawa, T. Kinetic Analysis of Derivative Curves in Thermal Analysis. J. Therm. Anal. 1970, 2, 301–324. https://doi.org/10.1007/bf01911411.Search in Google Scholar

25. Ozawa, T. A New Method of Analyzing Thermogravimetric Data. Bull. Chem. Soc. Jpn. 1965, 38 (11), 1881–1886. https://doi.org/10.1246/bcsj.38.1881.Search in Google Scholar

26. Criado, J.; Malek, J.; Ortega, A. Applicability of the Master Plots in Kinetic Analysis of Non-Isothermal Data. Thermochim. Acta 1989, 147 (2), 377–385. https://doi.org/10.1016/0040-6031(89)85192-5.Search in Google Scholar

27. Málek, J. The Kinetic Analysis of Non-Isothermal Data. Thermochim. Acta 1992, 200, 257–269. https://doi.org/10.1016/0040-6031(92)85118-f.Search in Google Scholar

28. Šesták, J.; Berggren, G. Study of the Kinetics of the Mechanism of Solid-State Reactions at Increasing Temperatures. Thermochim. Acta 1971, 3 (1), 1–12. https://doi.org/10.1016/0040-6031(71)85051-7.Search in Google Scholar

29. Man, P. R.; Lin, Q. W.; Xu, J.; Wang, H. B.; Zhao, Y. H.; Su, W. W.; Lyu, H. F.; Li, Y. Thermal Decomposition Kinetics of Poly(vinyl chloride) Insulation for Overloaded and Non-Overloaded Wires. J. Therm. Anal. Calorim. 2024, 1–16. https://doi.org/10.1007/s10973-024-13640-4.Search in Google Scholar

30. Farzanehfar, N.; Taheri, A.; Rafiemanzelat, F.; Moini Jazani, O. Impact of Multi-Function SiO2-nanoscale Ionic Materials on the Curing Kinetics of Epoxy Resin: New Approach to Improve Curing Characteristics of Thermoset Polymers. Polym. Compos. 2025, 1–24. https://doi.org/10.1002/pc.29461.Search in Google Scholar

31. Zhou, J.; Zhao, C.; Zhang, L.; Tao, G. Thermal Decomposition Properties and Thermal Hazard Assessment of Di(2, 4-dichlorobenzoyl) Peroxide (DCBP). Org. Process Res. Dev. 2024, 29 (1), 71–78. https://doi.org/10.1021/acs.oprd.4c00315.Search in Google Scholar

32. Vyazovkin, S.; Burnham, A. K.; Criado, J. M.; Pérez-Maqueda, L. A.; Popescu, C.; Sbirrazzuoli, N. ICTAC Kinetics Committee Recommendations for Performing Kinetic Computations on Thermal Analysis Data. Thermochim. Acta 2011, 520 (1–2), 1–19. https://doi.org/10.1016/j.tca.2011.03.034.Search in Google Scholar

33. Sronsri, C.; Noisong, P.; Danvirutai, C. Solid State Reaction Mechanisms of the LiMnPO4 Formation Using Special Function and Thermodynamic Studies. Ind. Eng. Chem. Res. 2015, 54 (28), 7083–7093. https://doi.org/10.1021/acs.iecr.5b01246.Search in Google Scholar

34. Sronsri, C. Thermal Dehydration Kinetic Mechanism of Mn1.8Co0.1Mg0.1P2O7⋅2H2O Using Málek’s Equations and Thermodynamic Functions Determination. Trans. Nonferrous Metals Soc. China 2018, 28 (5), 1016–1026. https://doi.org/10.1016/s1003-6326(18)64739-9.Search in Google Scholar

35. Stankovic, B.; Jovanovic, J.; Adnadjevic, B. Application of the Suzuki–Fraser Function in Modelling the Non-Isothermal Dehydroxylation Kinetics of Fullerol. React. Kinet. Mech. Catal. 2018, 123, 421–438. https://doi.org/10.1007/s11144-018-1380-6.Search in Google Scholar

36. Sharp, J.; Brindley, G.; Achar, B. N. Numerical Data for Some Commonly Used Solid State Reaction Equations. J. Am. Ceram. Soc. 1966, 49 (7), 379–382. https://doi.org/10.1111/j.1151-2916.1966.tb13289.x.Search in Google Scholar

37. Khedri, S.; Elyasi, S. Kinetic Analysis for Thermal Cracking of HDPE: A New Isoconversional Approach. Polym. Degrad. Stab. 2016, 129, 306–318. https://doi.org/10.1016/j.polymdegradstab.2016.05.011.Search in Google Scholar

38. Abu-Eittah, R.; Zaki, N.; Mohamed, M.; Kamel, L. Kinetics and Thermodynamic Parameters of the Thermal Decomposition of Bis(imipraminium)tetrachlorocuprate, Bis(imipraminium)tetrachloromercurate and Imipraminium Reineckate. J. Anal. Appl. Pyrolysis 2006, 77 (1), 1–11. https://doi.org/10.1016/j.jaap.2005.06.004.Search in Google Scholar

39. Spinks, J. W.; Woods, R. J. An Introduction to Radiation Chemistry, 3rd ed.; John Wiley & Sons: New York, 1990.Search in Google Scholar

40. Evans, R. D. See, for instance, The Atomic Nucleus; McGraw-Hill: New York, 1967.Search in Google Scholar

41. Monshi, M.; Alshehri, S.; Abd El-Salam, N.; Mahfouz, R. Isothermal Decomposition of γ-Irradiated Thallous Acetate. Thermochim. Acta 2000, 360 (1), 11–16. https://doi.org/10.1016/s0040-6031(00)00533-5.Search in Google Scholar

42. Galwey, A. K.; Herley, P. J.; Mohamed, M. A.-A. Thermal Decomposition of γ-Irradiated Silver Malonate. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 1988, 84 (3), 729–738. https://doi.org/10.1039/f19888400729.Search in Google Scholar

Received: 2025-02-04
Accepted: 2025-05-06
Published Online: 2025-05-23
Published in Print: 2025-08-26

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 8.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2025-0009/html?lang=en
Scroll to top button