Startseite Synthesis of amide imidazole-based functionalized ionic liquid for separation of Th/Pu
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Synthesis of amide imidazole-based functionalized ionic liquid for separation of Th/Pu

  • Peng Liu , Shan Xing , Xiaomin Li , Meiying Liu , Xupeng Zhi , Xinlong Chen , Keliang Shi EMAIL logo und Yinglin Shen ORCID logo EMAIL logo
Veröffentlicht/Copyright: 29. April 2025

Abstract

The plutonium in the highly radioactive waste liquid has a long half-life and this persistent radioactivity poses a great challenge to the long-term geological disposal of nuclear waste, making it necessary to separate it from other elements. Herein, three amide functionalized imidazolium ionic liquids (DXZ-1, DXZ-2 and MIMDIDOA) were synthesized for separation of Pu(IV) (Th(IV) used as a surrogate for plutonium) from a high-concentration nitric acid solution. The findings revealed that under the condition of 8 mol/L nitric acid, the kerosene solution with 0.1 mol/L MIMDIDOA has the highest extraction efficiency for Th(IV), with SFTh/U of 5.85, while the extraction of lanthanides (lanthanum and europium) can be ignored. The extraction mechanism was elucidated through Fourier-transform infrared spectroscopy (FT-IR), energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The extraction process is an anion exchange process between chloride ions and thorium complex anions in solution assisted by N-containing functional groups in ionic liquids. The adsorption recovery rate of Th4+/242Pu4+ by the extraction-elution resin impregnated using MIMDIDOA can reach 81 % under experimental conditions.


Corresponding authors: Keliang Shi and Yinglin Shen, School of Nuclear Science and Technology, Lanzhou University, Lanzhou, 730000, China, E-mail: (K. Shi), (Y. Shen)

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: All authors state no conflict of interest.

  6. Research funding: The financial support from the National Natural Science Foundation of China (grant nos. 21976075).

  7. Data availability: Not applicable.

References

1. Zhang, X.; Gu, P.; Liu, Y. Decontamination of Radioactive Wastewater: State of the Art and Challenges Forward. Chemosphere 2019, 215, 543–553; https://doi.org/10.1016/j.chemosphere.2018.10.029.Suche in Google Scholar PubMed

2. Maxwell, S. L. Rapid Method for Determination of Plutonium, Americium and Curium in Large Soil Samples. J. Radioanal. Nucl. Chem. 2008, 275 (2), 395–402; https://doi.org/10.1007/s10967-007-7032-3.Suche in Google Scholar

3. Ma, H.; Shen, M.; Tong, Y.; Wang, X. Radioactive Wastewater Treatment Technologies: A Review. Molecules 2023, 28 (4); https://doi.org/10.3390/molecules28041935.Suche in Google Scholar PubMed PubMed Central

4. Hasenoehrl, U.; Kupper, P. Historicizing Renewables: Issues and Challenges. Hist. Technol. 2021, 37 (4), 397–410; https://doi.org/10.1080/07341512.2022.2033384.Suche in Google Scholar

5. Veliscek-Carolan, J. Separation of Actinides from Spent Nuclear Fuel: A Review. J. Hazard. Mater. 2016, 318, 266–281; https://doi.org/10.1016/j.jhazmat.2016.07.027.Suche in Google Scholar PubMed

6. Pribyl, J. G.; Taylor-Pashow, K. M. L.; Shehee, T. C.; Benicewicz, B. C. High-Capacity Poly (4-Vinylpyridine) Grafted PolyHIPE Foams for Efficient Plutonium Separation and Purification. Acs. Omega 2018, 3 (7), 8181–8189; https://doi.org/10.1021/acsomega.8b01057.Suche in Google Scholar PubMed PubMed Central

7. Morgenstern, A.; Apostolidis, C.; Carlos-Marquez, R.; Mayer, K.; Molinet, R. Single-Column Extraction Chromatographic Separation of U, Pu, Np and Am. Radiochim. Acta 2002, 90 (2), 81–85; https://doi.org/10.1524/ract.2002.90.2_2002.81.Suche in Google Scholar

8. Premadas, A.; Cyriac, B.; Satyanarayana, K. Precipitative Separation and ICP-AES Determination of Rare Earth Elements, Yttrium, Scandium, and Thorium in Different Types of Geological Samples Including Iron- and Uranium-Rich Materials. At. Spectrosc. 2009, 30 (2), 65–74.Suche in Google Scholar

9. Stougie, L.; Giustozzi, N.; Van Der Kooi, H.; Stoppato, A. Environmental, Economic and Exergetic Sustainability Assessment of Power Generation from Fossil and Renewable Energy Sources. Int. J. Energy Res. 2018, 42 (9), 2916–2926; https://doi.org/10.1002/er.4037.Suche in Google Scholar

10. Mohapatra, P. K.; Kandwal, P.; Iqbal, M.; Huskens, J.; Murali, M. S.; Verboom, W. A Novel CMPO-Functionalized Task Specific Ionic Liquid: Synthesis, Extraction and Spectroscopic Investigations of Actinide and Lanthanide Complexes. Dalton Trans. 2013, 42 (13), 4343–4347; https://doi.org/10.1039/c3dt32967d.Suche in Google Scholar PubMed

11. Mohapatra, P. K.; Sengupta, A.; Iqbal, M.; Huskens, J.; Verboom, W. Highly Efficient Diglycolamide-Based Task-Specific Ionic Liquids: Synthesis, Unusual Extraction Behaviour, Irradiation, and Fluorescence Studies 2013, 19 (9), 3230–3238; https://doi.org/10.1002/chem.201203321.Suche in Google Scholar PubMed

12. Paramanik, M.; Raut, D. R.; Sengupta, A.; Ghosh, S. K.; Mohapatra, P. K. A Trialkyl Phosphine Oxide Functionalized Task Specific Ionic Liquid for Actinide Ion Complexation: Extraction and Spectroscopic Studies. RSC Adv. 2016, 6 (24), 19763–19767; https://doi.org/10.1039/c5ra24174j.Suche in Google Scholar

13. Bhattacharyya, A.; Mohapatra, P. K. Separation of Trivalent Actinides and Lanthanides Using Various ‘N’, ‘S’ and Mixed ‘N,O’ Donor Ligands: a Review. Radiochim. Acta 2019, 107 (9-11), 931–949; https://doi.org/10.1515/ract-2018-3064.Suche in Google Scholar

14. Rout, A. Separation of Plutonium from Other Actinides and Fission Products in Ionic Liquid Medium. Sep. Purif. Rev. 2022, 52 (2), 98–122; https://doi.org/10.1080/15422119.2022.2043376.Suche in Google Scholar

15. Zhu, Z.; Pranolo, Y.; Cheng, C. Y. Separation of Uranium and Thorium from Rare Earths for Rare Earth Production – A Review. Miner. Eng. 2015, 77, 185–196; https://doi.org/10.1016/j.mineng.2015.03.012.Suche in Google Scholar

16. Zeng, Z.; Gao, Y.; Ni, S.; Zhang, S.; Fu, X.; Sun, X. Investigation on the Recovery of Thorium and Rare Earth from Radioactive Waste Residue by Functionalized Ionic Liquids. Sep. Purif. Technol. 2023, 317, 123901; https://doi.org/10.1016/j.seppur.2023.123901.Suche in Google Scholar

17. Wacker, J. N.; Han, S. Y.; Murray, A. V.; Vanagas, N. A.; Bertke, J. A.; Sperling, J. M.; Surbella, R. G.III; Knope, K. E. From Thorium to Plutonium: Trends in Actinide(IV) Chloride Structural Chemistry. Inorg. Chem. 2019, 58 (16), 10578–10591; https://doi.org/10.1021/acs.inorgchem.9b01279.Suche in Google Scholar PubMed

18. Herbst, R. S.; Baron, P.; Nilsson, M. 6 – Standard and Advanced Separation: PUREX Processes for Nuclear Fuel Reprocessing. In Advanced Separation Techniques for Nuclear Fuel Reprocessing and Radioactive Waste Treatment; Nash, K. L., Lumetta, G. J., Eds.; Woodhead Publishing: USA, 2011; pp 141–175.10.1533/9780857092274.2.141Suche in Google Scholar

19. Šulka, M.; Cantrel, L.; Vallet, V. Theoretical Study of Plutonium(IV) Complexes Formed within the PUREX Process: A Proposal of a Plutonium Surrogate in Fire Conditions. J. Phys. Chem. A 2014, 118 (43), 10073–10080; https://doi.org/10.1021/jp507684f.Suche in Google Scholar PubMed

20. Gao, J.; Manard, B. T.; Castro, A.; Montoya, D. P.; Xu, N.; Chamberlin, R. M. Solid-Phase Extraction Microfluidic Devices for Matrix Removal in Trace Element Assay of Actinide Materials. Talanta 2017, 167, 8–13; https://doi.org/10.1016/j.talanta.2017.01.080.Suche in Google Scholar PubMed

21. Huang, Y. W.; Li, X. M.; Wu, F.; Yang, S. L.; Dong, F. F.; Zhi, X. P.; Chen, X. L.; Tian, G. X.; Shen, Y. L. A Novel Functionalized Ionic Liquid for Highly Selective Extraction of TcO4. Inorg. Chem. 2022; https://doi.org/10.1021/acs.inorgchem.2c01775.Suche in Google Scholar PubMed

22. Ren, P.; Li, Y.; Wang, Z.; Geng, Y.; Yu, T.; Hua, R. Extraction and Separation of Thorium(IV) and Uranium(VI) with 4-Oxaheptanediamide into Ionic Liquid System from Aqueous Solution. Chem. Pap. 2020, 74 (7), 2049–2057; https://doi.org/10.1007/s11696-019-01044-w.Suche in Google Scholar

23. Weßling, P.; Maag, M.; Baruth, G.; Sittel, T.; Sauerwein, F. S.; Wilden, A.; Modolo, G.; Geist, A.; Panak, P. J. Complexation and Extraction Studies of Trivalent Actinides and Lanthanides with Water-Soluble and CHON-Compatible Ligands for the Selective Extraction of Americium. Inorg. Chem. 2022, 61 (44), 17719–17729; https://doi.org/10.1021/acs.inorgchem.2c02871.Suche in Google Scholar PubMed


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/ract-2024-0336).


Received: 2024-07-21
Accepted: 2024-12-19
Published Online: 2025-04-29
Published in Print: 2025-06-26

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 7.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2024-0336/html?lang=de
Button zum nach oben scrollen