Startseite The collaboratively selective uranyl adsorption of marine fungal modification biosorbent linked by the open-chain polyether terminal with amidoxime
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The collaboratively selective uranyl adsorption of marine fungal modification biosorbent linked by the open-chain polyether terminal with amidoxime

  • Qiaorong Ye , Chensi Zeng , Yanfang Gong , Chenxi Qi , Xianghua Zeng und Ni Tan EMAIL logo
Veröffentlicht/Copyright: 8. August 2024

Abstract

To further improve the uranyl adsorption capacity and the selectivity adsorption ability of marine fungus ZZF51 from Zhanjiang sea area in China, its two new modification biosorbents (ZTBA/ZTDA) linked by the open-chain polyether terminal with two/one amidoxime unit(s) on mycelium were designed according to the synthesis process of etherification, sulfonylation, substitution, and amidoximation. By the reasonable characterization of Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TG), and scanning electron microscopy (SEM), it was confirmed that the above target materials were successfully prepared. The relevant experiments showed that both of ZTBA and ZTDA had not only the excellent uranium (VI) adsorption performance with the maximum adsorption capacity of 525.7 mg g−1 and 465.7 mg g−1, respectively, but also the better uranyl adsorption selectivity when in the simulated wastewater containing the various ions of UO2 2+, Th4+, Ba2+, Pb2+, Fe3+, Cu2+, and Ca2+. In addition, the selectivity analysis explored the longer polyether in the middle bridge and the more number of terminal amidoxime unit could synergistically improve their uranyl adsorption capacity and selectivity performance. Surely, the adsorption isotherm/kinetics models, the Gibbs free energy analysis, and the favourable reusability of the target materials were also discussed in this study in detail.


Corresponding author: Ni Tan, School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China, E-mail:

Funding source: The Natural Science Foundation of Hunan Province

Award Identifier / Grant number: No. 2020JJ4520

Funding source: The Research Learning and Innovative Experimental Program of Hunan

Award Identifier / Grant number: No. 2453, D202305082053299807

  1. Research ethics: The local Institutional Review Board deemed the study exempt from review.

  2. Author contributions: Ni Tan contributed to the study conception and design. Material preparation, experiments, data collection, and analysis were performed by Qiaorong Ye. The first draft of the manuscript was written by Qiaorong Ye. Chensi Zeng, Yanfang Gong, Chenxi Qi, and Xianghua Zeng commented on the previous versions of manuscript. All authors read and approved the final manuscript.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: This work was financially supported by the Natural Science Foundation of Hunan Province (No. 2020JJ4520) and the Research Learning and Innovative Experimental Program of Hunan (No. 2453, D202305082053299807).

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Ma, F. Q.; Dong, B. R.; Gui, Y. Y.; Cao, M.; Han, L.; Jiao, C. S.; Lv, H. T.; Hou, J. J.; Xue, Y. Adsorption of Low-Concentration Uranyl Ion by Amidoxime Polyacrylonitrile Fibers. Ind. Eng. Chem. Res. 2018, 57 (51), 17384–17393; https://doi.org/10.1021/acs.iecr.8b03509.Suche in Google Scholar

2. Zhang, G.; Fan, H. M.; Zhou, R. Y.; Yin, W. Y.; Wang, R. B.; Yang, M.; Xue, Z. Y.; Yang, Y. S.; Yu, J. X. Decorating UiO-66-NH2 Crystals on Recyclable Fiber Bearing Polyamine and Amidoxime Bifunctional Groups via Cross-Linking Method with Good Stability for Highly Efficient Capture of U(VI) from Aqueous Solution. J. Hazard. Mater. 2022, 424, 127273; https://doi.org/10.1016/j.jhazmat.2021.127273.Suche in Google Scholar PubMed

3. Xu, C.; Wang, J. J.; Yang, T. L.; Chen, X.; Liu, X. Y.; Ding, X. C. Adsorption of Uranium by Amidoximated Chitosan-Grafted Polyacrylonitrile Using Response Surface Methodology. Carbohydr. Polym. 2015, 121, 79–85; https://doi.org/10.1016/j.carbpol.2014.12.024.Suche in Google Scholar PubMed

4. Bao, L.; Guo, F. Y.; Wang, H. R.; Steven, L. L.; John, H. B.; Heather, M. K. S.; Zhang, Q. K.; Nie, J.; Ahmet, C.; Saiful, M. I.; Shalom, D.; Zhang, N. M.; Han, F. X. Functionalization of Clay Surface for the Removal of Uranium from Water. Methods X 2021, 8, 101275; https://doi.org/10.1016/j.mex.2021.101275.Suche in Google Scholar PubMed PubMed Central

5. Fan, Q. H.; Hao, L. M.; Wang, C. L.; Zheng, Z.; Liu, C. L.; Wu, W. S. The Adsorption Behavior of U(VI) on Granite. Environ. Sci. Processes Impacts 2014, 16, 534–541; https://doi.org/10.1039/c3em00324h.Suche in Google Scholar PubMed

6. Ahmed, W.; Mehmood, S.; Qaswar, M.; Ali, S.; Khan, Z. H.; Ying, H.; Chen, D.Y.; Nunez-Delgado, A. Oxidized Biochar Obtained from Rice Straw as Adsorbent to Remove Uranium(VI) from Aqueous Solutions. J. Environ. Chem. Eng. 2021, 9, 105104; https://doi.org/10.1016/j.jece.2021.105104.Suche in Google Scholar

7. Wang, L. L.; Fang, F.; Liu, J.; Beiyuan, J. Z.; Cao, J.L.; Liu, S. Y.; Ouyang, Q.; Huang, Y.L.; Wang, J.; Liu, Y. Y.; Song, G.; Chen, D. Y. U(VI) Adsorption by Green and Facilely Modified Ficus Microcarpa Aerial Roots: Behavior and Mechanism Investigation. Sci. Total Environ. 2022, 810, 151166; https://doi.org/10.1016/j.scitotenv.2021.151166.Suche in Google Scholar PubMed

8. Li, N.; Yin, M. L.; Tsang, D. C. W.; Yang, S. T.; Liu, J.; Li, X.; Song, G.; Wang, J. Mechanisms of U(VI) Removal by Biochar Derived from Ficus Microcarpa Aerial Root: A Comparison between Raw and Modified Biochar. Sci. Total Environ. 2019, 697, 134115; https://doi.org/10.1016/j.scitotenv.2019.134115.Suche in Google Scholar PubMed

9. De Araujo, L. G.; Vieira, L. C.; Sehn, C. R. L.; Da, S. E. A.; Watanabe, T.; De, P. F. R. V.; Marumo, J. T. Biosorption of Uranium from Aqueous Solutions by Azolla Sp. and Limnobium Laevigatum. Environ. Sci. Pollut. Res. 2022, 29, 45221–45229; https://doi.org/10.1007/s11356-022-19128-8.Suche in Google Scholar PubMed

10. Embaby, M. A.; Haggag, E. A.; El-Sheikh, A. S.; Marrez, D. A. Biosorption of Uranium from Aqueous Solution by Green Microalga Chlorella Sorokiniana. Environ. Sci. Pollut. Res. 2022, 29, 58388–58404; https://doi.org/10.1007/s11356-022-19827-2.Suche in Google Scholar PubMed PubMed Central

11. Srivastava, P. K.; Vaish, A.; Dwivedi, S.; Chakrabarty, D.; Singh, N.; Tripathi, R. D. Biological Removal of Arsenic Pollution by Soil Fungi. Sci. Total Environ. 2011, 409, 2430–2442; https://doi.org/10.1016/j.scitotenv.2011.03.002.Suche in Google Scholar PubMed

12. Bayramoglu, G.; Bektas, S.; Arica, M.Y. Biosorption of Heavy Metal Ions on Immobilized White-Rot Fungus Trametes Versicolor. J. Hazard. Mater. B 2003, 101, 285–300; https://doi.org/10.1016/s0304-3894(03)00178-x.Suche in Google Scholar PubMed

13. Martinez-Juarez, V. M.; Cardenas-Gonzalez, J. F.; Eugenia, T. B. M.; Acosta-Rodriguez, I. Biosorption of Mercury(II) from Aqueous Solutions onto Fungal Biomass. Bioinorg. Chem. Appl. 2012, 156190; https://doi.org/10.1155/2012/156190.Suche in Google Scholar PubMed PubMed Central

14. Gao, Y. Y.; Qin, Y. B.; Zhang, M.; Xu, L. H.; Yang, Z. C.; Xu, Z. L.; Wang, Y.; Men, M. Revealing the Role of Oxygen-Containing Functional Groups on Graphene Oxide for the Highly Efficient Adsorption of Thorium Ions. J. Hazard. Mater. 2022, 436, 129128; https://doi.org/10.1016/j.jhazmat.2022.129128.Suche in Google Scholar PubMed

15. Feng, Y. Z.; Qiu, X. Y.; Tao, Z. L.; Zheng, Y. E.; Song, J. Y.; Dong, Y. Q.; Liang, J. J.; Li, P.; Fan, Q. H. Oxygen-Containing Groups in Cellulose and Lignin Biochar: Their Roles in U(VI) Adsorption. Environ. Sci. Pollut. Res. 2022, 29, 76728–76738; https://doi.org/10.1007/s11356-022-20981-w.Suche in Google Scholar PubMed

16. Luan, X. F.; Wang, C. Z.; Wu, Q. Y.; Lan, J. H.; Chai, Z. F.; Xia, L. S.; Shi, W. Q. Theoretical Insights into Selective Extraction of Uranium from Seawater with Tetradentate N,O-Mixed Donor Ligands. Dalton Trans. 2022, 51, 11381–11389; https://doi.org/10.1039/d2dt01273a.Suche in Google Scholar PubMed

17. Zeng, X. C.; Zhang, G. H.; Zhu, J. F. Selective Adsorption of Heavy Metals from Water by a Hyper-Branched Magnetic Composite Material: Characterization, Performance, and Mechanism. J. Environ. Manage. 2022, 314, 114979; https://doi.org/10.1016/j.jenvman.2022.114979.Suche in Google Scholar PubMed

18. Shozo, Y.; Kazutomo, T.; Mitsuo, O. Matal-ion Complexation of Poly(oxyethylene) Derivatives. III Complexation in Aprotic Solvent and Isolation of their Solid Complexes. Bull. Chem. Soc. Jpn. 1978, 51 (12), 3111–3114.10.1246/bcsj.51.3111Suche in Google Scholar

19. Paola, H.; Ana, R. H.; Francisco, G.; Said, H.; Bruno, M. H. Gas-Phase Complexes of Cyclic and Linear Polyethers with Alkali Cations. Phys. Chem. Chem. Phys. 2010, 12, 13752–13758; https://doi.org/10.1039/c0cp00595a.Suche in Google Scholar PubMed

20. Di, D. Synthesis of Open-Chain Crown Ether Like Diphosphate and their Application in Supercritical Carbon Dioxide. Dissertation; University of Zhejiang, Hangzhou, 2014.Suche in Google Scholar

21. Daniel, A.; Ernö, P.; Wilhelm, S. Darstellung von neutralen, lipophilen Liganden für Membranelektroden mit Selektivität für Erdalkali-Ionen. Helv. Chim. Acta 1973, 56, 1780–1785; https://doi.org/10.1002/hlca.19730560538.Suche in Google Scholar

22. Fritz, V.; Edwin, W. Multidentate Acyclic Neutral Ligands and Their Complexation. Angew. Chem.- Int. Ed. 1979, 18, 753–758; https://doi.org/10.1002/anie.197907531.Suche in Google Scholar

23. Tang, N.; Liang, J.; Niu, C. G.; Wang, H.; Luo, Y.; Xing, W. L.; Ye, S. J.; Liang, C.; Guo, H.; Guo, J. Y.; Zhang, Y. F.; Zeng, G. M. Amidoxime-based Materials for Uranium Recovery and Removal. J. Mater. Chem. A 2020, 8, 7588–7625; https://doi.org/10.1039/c9ta14082d.Suche in Google Scholar

24. Bolotin, D. S.; Bokach, N. A.; Kukushkin, V. Y. Coordination Chemistry and Metal-Involving Reactions of Amidoximes. Relevance to the Chemistry of Oximes and Oxime Ligands. Coord. Chem. Rev. 2015, 313, 62–93; https://doi.org/10.1016/j.ccr.2015.10.005.Suche in Google Scholar

25. Wang, Y.; Lin, Z. W.; Zhu, J. H.; Liu, J.Y.; Yu, J.; Liu, Q.; Chen, R. R.; Li, Y.; Wang, J. Co-construction of Molecular-Level Uranyl-specific “Nano-holes” with Amidoxime and Amino Groups on Natural Bamboo Strips for Specifically Capturing Uranium from Seawater. J. Hazard. Mater. 2022, 437, 129407; https://doi.org/10.1016/j.jhazmat.2022.129407.Suche in Google Scholar PubMed

26. Yang, H. B.; Tan, N.; Zhang, H. P.; Deng, C. G.; Sun, M.; Lin, Y. C.; She, Z. G. Adsorption of Uranium(Ⅵ) by the Mangrove Endophytic Fungus Fusarium Sp. #ZZF51 from the South china Sea. J. Nucl. Radiochem. 2011, 33, 358–362.10.1007/s10967-011-1552-6Suche in Google Scholar PubMed PubMed Central

27. George, W. K.; Manju, V.; Rajender, S. V.; Prem, C. S.; Furn, F. K. J. The Tosylation of Alcohols. J. Org. Chem. 1986, 51 (12), 2386–2388; https://doi.org/10.1021/jo00362a044.Suche in Google Scholar

28. Wen, J.; Li, Q. Y.; Li, H.; Chen, M.; Hu, S.; Cheng, H. M. Nano-TiO2 Imparts Amidoximated Wool Fibers with Good Antibacterial Activity and Adsorption Capacity for Uranium (VI) Recovery. Ind. Eng. Chem. Res. 2018, 57 (6), 1826–1833; https://doi.org/10.1021/acs.iecr.7b04380.Suche in Google Scholar

29. Wongjaikham, W.; Wongsawaeng, D.; Hosemann, P.; Kanokworakan, C.; Ratnitsai, V. Enhancement of Uranium Recovery from Seawater Using Amidoximated Polymer Gel Synthesized from Radiation-Polymerization and Crosslinking of Acrylonitrile and Methacrylic Acid Monomers. J. Environ. Chem. Eng. 2018, 6 (2), 2768–2777; https://doi.org/10.1016/j.jece.2018.04.016.Suche in Google Scholar

30. Savvin, S. B. Analytical Use of Arsenazo III: Determination of Thorium, Zirconium, Uranium and Rare Earth Elements. Talanta 1961, 8 (9), 673–685; https://doi.org/10.1016/0039-9140(61)80164-1.Suche in Google Scholar

31. Huang, D. W.; Zhu, X. Q. Study on Catalytic Spectrophotometric Determination of Trace Iron (Ⅲ) with Fe(Ⅲ)-Hydrogen Peroxide-Arsenazo Ⅲ System. Metall. Anal. 2004, 24 (5). (in Chinese).Suche in Google Scholar

32. Luo, C. N.; Yang, Y.; Wei, Q.; Lyao, L. Spectrophotometric Determinafion of Trace Amount Molybdenum by Catalytic Kinetic. J. Anal. Sci. 1997, 13 (3). (in Chinese).Suche in Google Scholar

33. Liang, Y. H.; Wang, C. C.; Chen, C. Y. Synthesis and Characterization of a New Network Polymer Electrolyte Containing Polyether in the Main Chains and Side Chains. Eur. Polym. J. 2008, 44, 2376–2384; https://doi.org/10.1016/j.eurpolymj.2008.05.006.Suche in Google Scholar

34. Shi, S.; Wu, R.; Meng, S. L.; Xiao, G. P.; Ma, C. X.; Yang, G. C.; Wang, N. High-strength and Anti-biofouling Nanofiber Membranes for Enhanced Uranium Recovery from Seawater and Wastewater. J. Hazard. Mater. 2022, 436, 128983; https://doi.org/10.1016/j.jhazmat.2022.128983.Suche in Google Scholar PubMed

35. Wang, H. T.; Feng, L. J.; He, M.; Zhang, Y. Z.; Guo, D.; Zeng, Q. Q.; Yang, L. T.; Zhang, L. X. Preparation and Properties of Sodium Polyoxyethylene Ethernaphthalene Sulfonate with Different Chain-Length Alkyl Groups. Petroleum Science Bulletin 2020, 4, 587–596. (in Chinese).Suche in Google Scholar

36. Nakanishi, K; Solomon, P. H Infrared Absorption Spectroscopy; Holden Day: San Francisco, 1962.Suche in Google Scholar

37. Das, S.; Pandey, A. K.; Athawale, A. A.; Manchanda, V. K. Exchanges of Uranium(VI) Species in Amidoxime-Functionalized Sorbents. J. Phys. Chem. B 2009, 113, 6328–6335; https://doi.org/10.1021/jp8097928.Suche in Google Scholar PubMed

38. Yue, Y. F.; Zhang, C. X.; Tang, Q.; Mayes, R. T.; Liao, W.; Liao, C.; Tsouris, C.; Stankovich, J. J.; Chen, J. H.; Hensley, D. K.; Abney, C. W.; Jiang, D.; Brown, S.; Dai, S. A Poly(acrylonitrile)-Functionalized Porous Aromaticframework Synthesized by Atom-Transfer Radical Polymerization for the Extraction of Uranium from Seawater. Ind. Eng. Chem. Res. 2015, 55 (15), 4125–4129; https://doi.org/10.1021/acs.iecr.5b03372.Suche in Google Scholar

39. Mei, D. C.; Liu, L. J.; Li, H.; Wang, Y. D.; Ma, F. Q.; Zhang, C. H.; Dong, H. X. Efficient Uranium Adsorbent with Antimicrobial Function Constructed by Grafting Amidoxime Groups on ZIF-90 via Malononitrile Intermediate. J. Hazard. Mater. 2022, 422, 126872; https://doi.org/10.1016/j.jhazmat.2021.126872.Suche in Google Scholar PubMed

40. Gao, Q.; Tao, D. W.; Qi, Z. B.; Liu, Y. F.; Guo, J.; Yu, Y. Amidoxime Functionalized PVDF-Based Chelating Membranes Enable Synchronous Elimination of Heavy Metals and Organic Contaminants from Wastewater. J. Environ. Manage. 2022, 318, 115643; https://doi.org/10.1016/j.jenvman.2022.115643.Suche in Google Scholar PubMed

41. He, S. Y.; Hu, W. R.; Liu, Y. L.; Xie, Y.; Zhou, H.; Wang, X. Q.; Chen, J.; Zhang, Y. K. Mechanism of Efficient Remediation of U(VI) Using Biogenic CMC-FeS Complex Produced by Sulfate-Reducing Bacteria. J. Hazard. Mater. 2021, 420, 126645; https://doi.org/10.1016/j.jhazmat.2021.126645.Suche in Google Scholar PubMed

42. Yu, J. Q.; Zhang, H. S.; Liu, Q.; Zhu, J. H.; Yu, J.; Sun, G. H.; Li, R. M.; Wang, J. A High-Flux Antibacterial Poly(amidoxime)-Polyacrylonitrile Blend Membrane for Highly Efficient Uranium Extraction from Seawater. J. Hazard. Mater. 2022, 440, 129735; https://doi.org/10.1016/j.jhazmat.2022.129735.Suche in Google Scholar PubMed

43. Zhang, X.; Ouyang, B.; Hou, G. S.; Chang, P. P.; Shao, D. D. Application of Poly(amidoxime)/scrap Facemasks in Extraction of Uranium from Seawater: from Dangerous Waste to Nuclear Power. J. Radioanal. Nucl. Chem. 2022, 331, 3475–3484; https://doi.org/10.1007/s10967-022-08364-4.Suche in Google Scholar PubMed PubMed Central

44. Dai, Z. R.; Zhang, H.; Sui, Y.; Ding, D. X.; Hu, N.; Li, L.; Wang, Y. D. Synthesis and Characterization of a Novel Core–Shell Magnetic Nanocomposite via Surface-Initiated RAFT Polymerization for Highly Efficient and Selective Adsorption of Uranium(VI). J. Radioanal. Nucl. Chem. 2018, 316, 369–382; https://doi.org/10.1007/s10967-018-5720-9.Suche in Google Scholar

45. Yu, S. J.; Wang, X. X.; Chen, Z. S.; Wang, J.; Wang, S. H.; Hayat, T.; Wang, X. K. Layered Double Hydroxide Intercalated with Aromatic Acid Anions for the Efficient Capture of Aniline from Aqueous Solution. J. Hazard. Mater. 2017, 321, 111–120; https://doi.org/10.1016/j.jhazmat.2016.09.009.Suche in Google Scholar PubMed

46. Ji, K. J.; Wang, J. Q.; Chen, C. F. An XPS Study of Polyester-Polyether Multiblock Copolymers. J. Beijing Inst. Technol. 1990, 10 (1).Suche in Google Scholar

47. Liao, J.; Ding, L.; Zhang, Y.; Zhu, W. K. Efficient Removal of Uranium Fromwastewater Using Pig Manure Biochar: Understanding Adsorption and Binding Mechanisms. J. Hazard. Mater. 2022, 423, 127190; https://doi.org/10.1016/j.jhazmat.2021.127190.Suche in Google Scholar PubMed

48. Wang, B. D.; Zhou, Y. X.; Li, L.; Wang, Y. Preparation of Amidoxime-Functionalized Mesoporous Silica Nanospheres (Ami-MSN) from Coal Flfly Ash for the Removal of U(VI). Sci. Total Environ. 2018, 626, 219–227; https://doi.org/10.1016/j.scitotenv.2018.01.057.Suche in Google Scholar PubMed

49. Monier, M.; Abdel-Latif, D. A.; Mohammed, H. A. Synthesis and Characterization of Uranyl Ion-Imprinted Microspheres Based on Amidoximated Modifified Alginate. Int. J. Biol. Macromol. 2015, 75, 354–363; https://doi.org/10.1016/j.ijbiomac.2014.12.001.Suche in Google Scholar PubMed

50. Lu, X.; He, S. N.; Zhang, D. X.; Reda, A. T.; Liu, C.; Feng, J.; Yang, Z. Synthesis and Characterization of Amidoxime Modified Calix[8]arene for Adsorption of U(VI) in Low Concentration Uranium Solution. RSC Adv. 2016, 6, 101087–101097; https://doi.org/10.1039/c6ra23764a.Suche in Google Scholar

51. Yu, P.; Zhu, X. X.; Gao, J. D.; Wu, S. Y.; Tang, L.; Xiong, S. B.; Wang, L. M.; Zou, G. Preparation of Dendritic-Linear Polyether-Modified Silica Sol and its Application in Coatings. J. Coat. Technol. Res. 2016, 13 (6), 963–971; https://doi.org/10.1007/s11998-016-9807-3.Suche in Google Scholar

52. Liu, Y. Q.; Chen, C.; He, L. Q.; Hu, L.; Ding, Z.; Liao, S.; Tan, N. Preparation of a Fungal-Modified Material Linked by the Monoamidoxime Terminal Open-Chain Polyether and its Uranyl Adsorption. Ind. Eng. Chem. Res. 2021, 60, 4705–4713; https://doi.org/10.1021/acs.iecr.0c05213.Suche in Google Scholar

53. Tan, N.; Ye, Q. R.; Liu, Y. Q.; Yang, Y. C.; Ding, Z.; Liu, L. J.; Wang, D. D.; Zeng, C. S. A Fungal-Modified Material with High Uranium (VI) Adsorption Capacity and Strong Anti-interference Ability. Environ. Sci. Pollut. Res. 2023, 30, 26752–26763; https://doi.org/10.1007/s11356-022-24092-4.Suche in Google Scholar PubMed

54. Cheng, Y. X.; Li, F. Z.; Liu, N.; Lan, T.; Yang, Y. Y.; Zhang, T.; Liao, J. L.; Qing, R. W. A Novel Freeze-Dried Natural Microalga Powder for Highly Efficient Removal of Uranium from Wastewater. Chemosphere 2021, 282, 131084; https://doi.org/10.1016/j.chemosphere.2021.131084.Suche in Google Scholar PubMed

55. He, D. X.; Tan, N.; Luo, X. M.; Yang, X. C.; Ji, K.; Han, J. W.; Chen, C.; Liu, Y. Q. Preparation, Uranium (VI) Absorption and Reuseability of Marine Fungus Mycelium Modified by the Bis-Amidoxime-Based Groups. Radiochim. Acta 2019, 108, 37–49; https://doi.org/10.1515/ract-2018-3063.Suche in Google Scholar

56. Han, J. W.; Hu, L.; He, L. Q.; Ji, K.; Liu, Y. Q.; Chen, C.; Luo, X. M.; Tan, N. Preparation and Uranium(VI) Biosorption for Tri-amidoxime Modified Marine Fungus Material. Environ. Sci. Pollut. Res. 2020, 27, 37313–37323; https://doi.org/10.1007/s11356-020-07746-z.Suche in Google Scholar PubMed

57. Meng, P. P. Application of Origin Self Defined Function Fitting to Analysis of Soil Adsorption Isotherm Model. Exp. Technol.Manage. 2017, 34, 62–68. (in Chinese).Suche in Google Scholar

58. Yu, H. Z. Teaching Reference Book of Communication Electronic Circuit; Tsinghua University Press: Beijing, 2005.Suche in Google Scholar

59. Demirbas, E.; Dizge, N.; Sulak, M. T.; Kobya, M. Adsorption Kinetics and Equilibrium of Copper from Aqueous Solutions Using Hazelnut Shell Activated Carbon. Chem. Eng. J. 2009, 148, 480–487; https://doi.org/10.1016/j.cej.2008.09.027.Suche in Google Scholar

60. Khamizov, R. K. A Pseudo-second Order Kinetic Equation for Sorption Processes. Russ. J. Phys. Chem. A 2020, 94 (1), 125–130; https://doi.org/10.1134/s0036024420010148.Suche in Google Scholar

61. CHien, S. H.; Clayton, W. R. Application of Elovich Equation to the Kinetic of Phosphate Release and Sorption in Soils. Soil Sci. Soc. Am. J. 1980, 44, 265–268; https://doi.org/10.2136/sssaj1980.03615995004400020013x.Suche in Google Scholar

62. Urano, K.; Tachikawa, H. Process Development for Removal and Recovery of Phosphorus from Wastewater by New Adsorbent 2 Adsorption Rates and Breakthrough Curves. Ind. Eng. Chem. Res. 1991, 30, 1897–1899; https://doi.org/10.1021/ie00056a033.Suche in Google Scholar

63. Zhou, Y. Z.; Li, Y.; Wang, X. L.; Liu, D. X.; Liu, D. B. Preparation of Amidoxime Functionalized Titanate Nanosheets for Efficient Extraction of Uranium from Aqueous Solution. J. Solid State Chem. 2020, 290, 121562; https://doi.org/10.1016/j.jssc.2020.121562.Suche in Google Scholar

64. Nollet, H.; Roels, M.; Lutgen, P.; Vander, M. P.; Verstraete, W. Removal of PCBs from Wastewater Using Fly Ash. Chemosphere 2003, 53, 655–665; https://doi.org/10.1016/s0045-6535(03)00517-4.Suche in Google Scholar PubMed


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/ract-2024-0296).


Received: 2024-04-05
Accepted: 2024-07-16
Published Online: 2024-08-08
Published in Print: 2024-12-17

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 17.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2024-0296/html?lang=de
Button zum nach oben scrollen